
Harmony: Overcoming the Hurdles of GPU Memory Capacity to
Train Massive DNN Models on Commodity Servers

Youjie Li∗
UIUC

li238@illinois.edu

Amar Phanishayee
Microsoft Research
amar@microsoft.com

Derek Murray†
Lacework

derek.murray@lacework.net

Jakub Tarnawski
Microsoft Research

jakub.tarnawski@microsoft.com

Nam Sung Kim
UIUC

nam.sung.kim@gmail.com

ABSTRACT
Deep neural networks (DNNs) have grown exponentially in size
over the past decade, leaving only thosewho havemassive datacenter-
based resources with the ability to develop and train such models.
One of the main challenges for the long tail of researchers who
might have only limited resources (e.g., a single multi-GPU server)
is limited GPU memory capacity compared to model size. The prob-
lem is so acute that the memory requirement of training massive
DNN models can often exceed the aggregate capacity of all avail-
able GPUs on a single server; this problem only gets worse with
the trend of ever-growing model sizes. Current solutions that rely
on virtualizing GPU memory (by swapping to/from CPU memory)
incur excessive swapping overhead. In this paper, we present a
new training framework, Harmony, and advocate rethinking how
DNN frameworks schedule computation and move data to push
the boundaries of training massive models efficiently on a single
commodity server. Across various massive DNN models, Harmony
is able to reduce swap load by up to two orders of magnitude and
obtain a training throughput speedup of up to 7.6× over highly
optimized baselines with virtualized memory.

PVLDB Reference Format:
Youjie Li, Amar Phanishayee, Derek Murray, Jakub Tarnawski, and Nam
Sung Kim. Harmony: Overcoming the Hurdles of GPU Memory Capacity
to Train Massive DNN Models on Commodity Servers. PVLDB, 15(11): 2747
- 2760, 2022.
doi:10.14778/3551793.3551828

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/msr-fiddle/harmony.

1 INTRODUCTION
Modern DNNs have transformed our approach of solving a range
of problems such as image classification [32], semantic segmenta-
tion [64], translation [67], and language modeling [57]. Over the
∗Work done as a Project Fiddle intern at MSR.
†Work done when the author was at Microsoft.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551828

2012 2014 2016 2018 2020 2022
Year

0.1

1

10

100

1000

10000

#
 P

ar
am

et
er

 (
Bi

lli
on

)

AlexNet
VGG19

ResNeXt101

AmoebaNetGNMT
BERT

GPT2

Megatron

GPT3
GShard

RecSys-E

K20 K40 P100 V100 A100

DNN Model Datacenter GPU

1

10

100

1000

10000

100000

1000000

G
PU

 M
em

or
y

(G
B)

Figure 1: Growth of DNN model size and GPU memory ca-
pacity over the past decade [12, 53]. Memory consumed here
only accounts for model state which is a small fraction of
total training memory footprint [5, 12, 26, 58, 61, 66].

years, these models have grown exponentially in size while con-
tinuing to achieve unprecedented accuracy on ever more complex
tasks [1, 30, 44]. For example, a 557-million-parameter AmoebaNet
can achieve super-human accuracy in image classification [20]. Sim-
ilarly, a state-of-the-art language model like the 175-billion param-
eter GPT-3 [4] can generate human-like text [15, 41, 62]. Training
these models to accuracy takes weeks to months of wall-clock time,
despite running in parallel on large clusters of fast accelerators.

These resource demands leave only those who have massive
datacenter-based resources (e.g., Google, Microsoft, NVIDIA, etc.)
with the ability to train such models. The long tail of researchers
who have only limited resources (e.g., a single server with multiple
GPUs) increasingly risk being alienated from innovating in this
space. While training on larger clusters naturally results in speedier
training, in this paper we investigate how to push the boundaries
of training massive models on a single commodity server – a setting
invaluable for developing, debugging, and fine-tuning DNNs [9].

Challenges. One of the main challenges in training massive mod-
els is that the required memory footprint far exceeds the memory
capacity of accelerators. Figure 1 shows how sizes of image classi-
fication and language models have grown dramatically over time.
Furthermore, model parameters are only a small part of the mem-
ory footprint of training; gradients, stashed activations, optimizer
states, and framework workspace all taken together significantly
blow up the memory footprint [5, 26, 58, 61, 66].

2747

https://doi.org/10.14778/3551793.3551828
https://github.com/msr-fiddle/harmony
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551828
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(a) Data Parallelism (DP).

Small
Model

GPU

Data Small
Model

GPU

D

(b) Pipeline Parallelism (PP).

Large ModelD

GPU GPU

(e) Harmony.

Decompose

Late-Bind

GPU GPU

MassiveModelD

Fine-Grain Task(c) DP with per-GPU memory virtualization.

MassiveModel

GPU

Swap

D MassiveModel

GPU

D

(d) PP with per-GPU memory virtualization.

MassiveModelD

GPUGPU

Figure 2: Illustrative comparison between different approaches for massive model training. (Only one data batch is shown.)

This memory footprint problem motivates recent innovations
that alleviate memory pressure. For example, recent advances in
GPU memory virtualization push the boundaries of what can be
achieved on a single GPU [6, 19, 55, 61], but as we show in § 2
such techniques are inefficient when applied to parallel multi-GPU
training regardless of data parallelism [10, 35] or pipeline paral-
lelism [20, 45], as illustrated in Figure 2(a–d). Other techniques, such
as encoding data structures [26], recomputing intermediate ten-
sors [5], sharding optimizer [58], offloading optimizer to CPU [60],
and splitting a large layer into small ones [63], all aim to reduce
memory pressure during training. However, despite these optimiza-
tions, the general problem of efficiently training massive models
on a single server with a handful of commodity GPUs while
exhausting the collective memory capacity of all available
GPUs and CPU DRAM is still an open problem.

We argue that current DNN frameworks have two fundamental
problems that limit massive model training on modest deployments.
First, they schedule work at a coarse granularity, treating the
training program as a black box: computing an entire model or an
entire stage of layers for each input batch. This coarse granularity
limits flexibility of scheduling tasks to available resources, thus
thwarting memory-reuse–based performance enhancements that
can reduce virtual memory swap overhead. For example, executing
a group of DNN layers (even with intra-layer partitions), one input
batch at a time, limits reuse of weights loaded into memory across
different input batches, as they might get swapped out. Second,
frameworks eagerly bind work to accelerators, pushing this deci-
sion all the way to the programmer’s training script in most cases.
For example, in PyTorch [37], the state of a layer group is bound to
a user-script–defined device, and thus the forward and backward
computation on that state is implicitly bound to the same device.
Virtualizing the memory of a single GPU helps here, by treating
the nearby host RAM as a swap target, but it makes inefficient use
of other available GPUs and the interconnects between them.

Contributions. Ideally, users could write DNN training programs
that target a single virtual accelerator with practically unbounded
memory. Our proposed system, Harmony, targets this ideal. As
illustrated in Figure 2(e), Harmony decomposes a model’s opera-
tions in a training script into fine-grained tasks 1 and introduces
a novel task scheduler that efficiently maps computation and state

1A task consists of an input microbatch and a contiguous set of layers; there is no
requirement of one-one correspondence between forward and backward tasks.

to physical devices (late binding); the tasks in the task graph can
run on different physical devices in a data- or pipeline-parallel
fashion and Harmony transparently moves state and data across
tasks. Unlike prior pipeline-parallel training [20, 45, 46], each GPU
in Harmony no longer hosts a fixed stage of layers, thus resulting in
a novel pipelining scheme,Wrap-Around Pipeline, while offering
synchronous SGD semantics.

Harmony has to overcome two main challenges to operate at
peak throughput: (i)minimizing expensive CPU-GPU memory swaps,
and (ii) balancing load across all GPUs so that there is no bottleneck
worker in the execution pipeline. Harmony achieves this by using
four distinct optimizations for efficient training:
1 Reusing State in GPU Memory across Different Inputs. Em-
powered by the flexibility of scheduling at a finer granularity, we
propose a new technique called input-batch grouping, where a sched-
uled layer(s) can run across a group of input batches before sched-
uling the next layer(s) on the same GPU, thus improving state reuse
in GPU memory and consequently improving arithmetic intensity.
2 Scheduling Tasks Just-in-time. Harmony schedules tasks as
soon as all input dependencies are available, thus avoiding the risk
of swapping out those dependencies; this especially helps tasks
such as weight update, which in frameworks such as PyTorch are
normally scheduled to execute only after the backward pass for the
entire model, resulting in avoidable CPU-GPU swaps.
3 Generalized Tensor Swaps over Fast Peer-to-peer Links. With
late binding of tasks to GPUs, Harmony places adjacent tasks across
GPUs and swaps tensors directly between GPUs using peer-to-peer
(p2p) swaps rather than swapping state back and forth to CPU
memory. Unlike prior work, p2p swaps in Harmony are not limited
to only the output tensors of stages [11, 20, 45] but can be used to
transfer or swap any intermediate tensor within each stage.
4 Multi-dimensional Layer Packing. Tensor swaps can be min-
imized by packing contiguous layers together. Greedily picking
the largest pack size that fits a GPU, however, results in globally
sub-optimal pipelines due to imbalance across GPUs. Furthermore,
picking layer packs is challenging because not all layers are cre-
ated equal. The same layer has drastically different compute and
memory requirements between forward and backward passes for
a fixed batch size; the differences are only accentuated when we
consider different batch sizes. We thus have to find packs in the
multi-dimensional space (forward batch size, forward packs, back-
ward batch size, backward packs) that balance compute, memory,

2748

GPU

Swap

Host Memory
CPU

PCIe
Switch

GPU GPU GPU

PCIe
Switch

…

…

Bottleneck

(a) Intra-server interconnects.

0

15

30

45

60

0

0.5

1

1.5

2

1 2 3 4

G
lo
ba

l S
w
ap

 V
ol
.

(G
B)

G
lo
ba

l T
hr
ou

gh
pu

t
(s
eq

s/
se
c)

GPUs

Throughput Swap Volume

(b) DP with per-GPU memory virtualization.

0

5

10

15

20

1 2 3 4

M
em

 F
oo

tp
rin

t (
G
B)

GPU ID

Memory Capacity

Heavy
Swap No Swap

Light
Swap

Bottleneck

(c) PP with per-GPU memory virtualization.

Figure 3: The CPU-GPU swap bottleneck in Data Parallelism (DP) [36] and Pipeline Parallelism (PP) [46] when using GPU
memory virtualization. For example, training BERT [8] on a server with four GTX1080Tis (11GB) and a batch size of 5 results
in memory footprint exceeding GPU memory capacity, requiring IBM-LMS [24] for virtualizing individual GPU memory.
(a) and (b) show that DP’s swap volume increases linearly with the number of GPUs, exposing the bottleneck PCIe link and thus
throttling training throughput. (c) shows that PP’s swap volume is unbalanced across GPUs, resulting in pipeline bottleneck.

and swaps across GPUs; however, we find this problem of optimally
determining layer packs in Harmony to be NP-hard. We propose
an efficient heuristic algorithm that searches through this multi-
dimensional space to find effective parallel training schedules with-
out pipeline bottlenecks. To our best knowledge, no prior work
has attempted such multi-dimensional layer packing.

In this paper, we show how task decomposition and late binding,
together with a set of novel performance optimizations mentioned
above, enable virtualized parallel training of massive DNNs that
exhaust collective memory capacity of all available accelerators in
modest single-server deployments2. A short workshop version of
this paper highlighted the limitations of existing DNN frameworks
in training massive models [38]. Unlike our prior work, in the
current paper we provide foundational principles, a detailed design
backed by a concrete implementation, and extensive evaluations
across various massive models. We show that Harmony is able to
reduce swap load by up to two orders of magnitude and obtain a
training throughput speedup of up to 7.6× over highly optimized
baselines with virtualizedmemory, including recent systems such as
ZeRO-Infinity [59], while offering synchronous SGD semantics.

Roadmap. In the rest of this paper, we first present the limitations
of related works with a focus on GPU memory virtualization (§
2), then offer a high-level overview of Harmony (§ 3), followed by
low-level designs and implementations (§ 4). We experimentally
validate Harmony’s efficacy (§ 5) before concluding (§ 6-7).

2 BACKGROUND AND RELATED WORKS
Parallel Training. Data Parallelism (DP) [35, 37, 40], the predom-
inant mode of parallel DNN training, requires the entire model’s
memory footprint to fit on each GPU, making it unfit for massive
model training (Figures 1 and 2(a)). Pipeline Parallelism (PP) [11, 20,
45, 46] and Model Parallelism (MP) [63] have become mainstream
for training large models by partitioning a model so that each part
fits on an individual GPU (Figure 2(b)). However, even in the face
of partitioned models, all these systems require training memory
footprint to be less than the collective memory capacity of all GPUs.

2We omit storage from the memory hierarchy; if incorporated, our work can target
even larger models that exceed CPU DRAM capacity.

MemoryOptimizations. To reduce thememory footprint, modern
frameworks incorporate various memory optimizations by default,
such as the recompute that re-materializes intermediate tensors
when needed [5, 27, 66]. CPU-offloading is also used for offloading
model/optimizer states from GPU to CPU [13, 21, 59, 60].
GPU Memory Virtualization. Despite various memory optimiza-
tions, GPU memory virtualization [51] remains inexorable due to
the exponential growth in model sizes. Recent work has applied this
idea to train large DNNs by backing GPU memory with CPU mem-
ory and swapping tensors between CPU and GPU [6, 19, 55, 61].
However, such techniques are limited to only an individual GPU
considered in isolation. Here we show that per-GPU memory vir-
tualization is inefficient as it causes either a high swap overhead
when used in DP or swap imbalance in PP (Figure 2(c–d)).

Today’s frameworks have four key inefficiencies that cause these
swap-overhead related performance problems in parallel training:
1 Repeated Swaps. A layer can consume different input data
batches or intermediate tensors at different times, but it always
requires the same weight or gradient buffer. With GPU memory
virtualization, these common weight and gradient are swapped in
and out repeatedly across batches of input data.
2 Unnecessary Swaps. Certain operators in DNN frameworks
today are scheduled at rigid points in the timeline of a training
iteration, even though all their inputs are available much earlier.
When trainingmassive models with GPU virtualization, this rigidity
is inefficient: the GPU-resident inputs and state for such operators
can be swapped out of GPU memory, only to be swapped back
in again when the operator is actually scheduled. For example, in
PyTorch, the weight update for each layer only starts after the
backward pass of the entire model, potentially causing unnecessary
swaps of most layer weights and gradients.
3 Only CPU-GPU Swaps. GPU memory virtualization lacks con-
text about parallel training, works in isolation to other GPUs,
and can only swap to host memory. This exposes the bottleneck
device-to-host interconnect (Figure 3(a)) and misses the oppor-
tunity to use fast device-to-device links for cross-device swaps.
Figure 3(b) shows that in DP, the swap overhead across multi-
ple GPUs throttles throughput, as the global swap load exposes

2749

Data A Mini-batch DNN An Entire Model

Per-Layer
CodeMicro-batches

Profiler
Per-Layer Profiles

Scheduler

Configuration
Search Engine

Task Graph
Generator

Runtime
Estimator

(UF , PF , UB , PB) Backward Packs
PB = [1:2) [2:3) [3:4]

Backward
Micro-batch

Size UB

Forward Packs
PF = [1:3) [3:4]

Forward
Micro-batch

SizeUF

A Task GraphTr
ai
ni
ng
 T
im

e

Machine Model

Runtime
CPU

GPU

Swap

GPU
P2P

Message Passing & Shared Memory

Task Graph for Best Configuration

Decomposer Graph Creator
Code Generator

Task1

Task2

Task3

Task4

One Iteration

Repeat
For All

Iterations

Figure 4: High-level overview of Harmony.

the bottleneck link: CPU and shared PCIe links with 1:4∼8 over-
subscription [2, 34, 50, 52, 56]. As each GPU is swapping a similar
amount of state, the swap overhead grows linearly in the number
of GPUs. Furthermore, PP may use p2p communication but only for
per-stage output tensors (a small fraction of all tensors); it leaves
all intermediate tensors within each stage, thus swapping them to
the CPU when combined with per-GPU memory virtualization.
4 Unbalanced Swaps. In PP, pipeline stages are designed to be
compute-load balanced, but such pipelining inherently has imbal-
anced memory sizes across stages: the head of the pipeline must
stash more activations compared to the tail [45, 46]. Lacking this
context and operating in isolation on individual GPUs, naively vir-
tualizing GPU memory can result in swap imbalance across stages,
exposing the bottleneck stage with the heaviest swap (Figure 3(c)).

3 TRAINING IN HARMONY
Figure 4 shows a high-level overview of Harmony. First, users
provide Harmony with training data and their model (written in
imperative-style PyTorch [54], as if running sequentially on one
device). Harmony’s Decomposer breaks down the entire model by
extracting its layer-granularity graph (via the Graph Creator), and
then generating per-layer code based on the graph such that they
can be executed individually if needed (via the Code Generator).
The data minibatch is also decomposed into small microbatches.

Next, Harmony’s Profiler executes the layer-granularity graph,
one layer at a time, by running the per-layer code on a single GPU of
the type that will be used in the deployment (seamlessly swapping
tensors between CPU and GPU as required); it does this both for
the forward pass and also later for the backward pass when the
graph is traversed in the reverse direction. The profiler repeats this
process across different microbatch sizes. This generates profiles

Forward Pass Backward Pass

Input-Batch Grouping Peer2Peer Swaps Just-In-Time Scheduling

Time

GPU1 1
L1

2
L1

1
L4-5

2
L4-5

1
L4-5

2
L4-5 L4-5

1
L2

2
L2 L2

GPU2 1
L2-3

2
L2-3

1
L6

2
L6 L6

1
L3

2
L3 L3

1
L1

2
L1 L1

Weight Input Input

Stash Stash

Output Output

GPU2

Weight Update

1
L1

2
L1

1
L2-3

GPU1

Microbatch Index
Layer IDs

Microbatch Index
Layer IDs

Layer IDs

Compute

SwapIn

SwapOut

Peer2Peer

Compute

Figure 5: Example of training a toy six-layer “massive” model
on two GPUs with Wrap-Around Pipeline in Harmony.

containing computation times, memory footprint, and input tensor
sizes for each layer under different settings.

Then, Harmony’s Scheduler takes the generated profiles along
with the machine model (e.g., GPU memory capacity, number of
GPUs, and interconnects) to compile a schedule of a single training
iteration. It does this by: 1) selecting which layers should be exe-
cuted together as a pack and thus picking a training configuration
(a four-tuple of <forward microbatch size 𝑈𝐹 , forward layer
packs 𝑃𝐹 , backward microbatch size𝑈𝐵 , backward layer packs
𝑃𝐵>), 2) building a task graph for this configuration (Task Graph
Generator), 3) estimating its training time (Runtime Estimator), and
4) refining the configuration by searching through the space of
configuration options (Configuration Search Engine).

Finally, once the best configuration is found and the final task
graph is generated, the Harmony Runtime then executes it for all
training iterations on the set of GPUs in the deployment.
Modes of Parallel Execution. Harmony supports two modes
of execution, data parallelism (Harmony DP) and pipeline paral-
lelism (Harmony PP with Wrap-Around Pipeline), while offering
users the illusion of running on a single virtual device with practi-
cally unbounded memory. With a user-specified parallelism mode,
Harmony’s Scheduler binds tasks to devices, appropriately sched-
uling the movement of required inputs (activations, weights, etc.)
from CPU to GPU memory or directly between GPU memories.
Key Optimizations. Operating at peak throughput requires Har-
mony to overcome two main challenges: (i) minimizing expensive
CPU-GPU memory swaps, and (ii) balancing load across all GPUs
so that there is no bottleneck worker in the execution pipeline.
Harmony achieves this by using four distinct optimizations:
1 Input-batch grouping allows a scheduled layer pack to execute
across different input batches back-to-back; the state of layer(s) (e.g.,
the weight or gradient buffer) can stay in memory and be reused
across multiple input data batches or input tensors. Grouping 𝑀

inputs for a layer pack (each input-batch saturates GPU memory)
reduces what would otherwise have been𝑀 repeated swaps of the
state for each batch to a single swap. Figure 5 shows an example of
training with Harmony PP, where each layer pack executes on a
group of two microbatches back-to-back before moving to the next
layer pack. Unlike traditional pipeline stages [20, 45] which execute
all layers in the stage one batch at a time, resulting in repeated

2750

Forward

Input 𝑿
Weight 𝑾

Output 𝒀
Stashed Input 𝐬𝑿
Weight 𝑾

Swap-In Swap-Out

Backward

Output Grad 𝒅𝒀
Weight Grad 𝒅𝑾
Stashed Input 𝐬𝑿
Weight 𝑾

Input Grad 𝒅𝑿
Accumulated 𝒅𝑾!

Weight 𝑾

Update

Weight Grad 𝒅𝑾
Weight 𝑾
Optimizer State 𝑲

Reset 𝒅𝑾′
Updated 𝑾′
Updated 𝑲′

(a) Swap model. (c) Swapping of weights for layer 𝑳𝒋 in “Harmony DP.”

(b) Swapping of weights for layer 𝑳𝒋 in “DP with per-GPU memory virtualization.”

L1 L2 … …L𝒋… L2 L1L𝒋 … L1 L2 L𝒋…
Time

… …

𝑾𝑳𝒋 𝑾𝑳𝒋

GPU
CPU

Repeat for microbatch 𝒊 = 𝟏…𝒎

𝑾𝑳𝒋 𝑾𝑳𝒋 𝑾′𝑳𝒋𝑾𝑳𝒋

Time

GPU
CPU𝑾𝑳𝒋 𝑾𝑳𝒋 𝑾′𝑳𝒋

… … … L𝒋 L𝒋 … … L𝒋 L𝒋… L𝒋 … …
𝒊 = 𝟏 𝒊 = 𝒎 𝒊 = 𝟏 𝒊 = 𝒎

Figure 6: Tensors that need to be swapped in and out for forward, backward, and weight update phases of training.

swaps when used with GPU memory virtualization, in Harmony
the forward pass of a layer (e.g., 𝐿1) runs through 2 input batches
without swapping out its weights, and its backward pass computes
the gradient of 2 batches without swapping out its gradient buffer.
2 Just-in-time scheduling executes a task as soon as all its input
tensors are available in GPU memory, avoiding delays in execution
that risk unnecessarily swapping out the required input tensors,
and then swapping them back in later. For example, in Figure 5
jit-scheduling brings the update task of each layer closer to its
backward pass so that the weight and gradient tensors needed by
the update tasks can be reused while they are still resident in GPU
memory (jit-update). Similarly, the backward pass for the last layer
(𝐿6) can be scheduled immediately along with its forward pass for
each microbatch (jit-compute), an optimization especially useful
when it avoids the overheads of recomputation for the last layer.
3 Generalized p2p swaps replaces CPU-GPU swaps, for all ten-
sors (rather than only the per-stage output in prior work [45, 46])
that are shared across two layers, with fast device-to-device swaps
where applicable. For the example in Figure 5, all input and output
tensors of layers are transferred directly between the two GPUs.
4 Multi-dimensional layer packing packs together multiple
layers executing on a microbatch of input (e.g., forward pass, back-
ward pass, or weight update). Consequently, both the pack size
and the microbatch size of a task determine its memory footprint
and performance. Prior work fixes one or both of these parameters,
invariably punting the problem to model developers [20, 45, 63].
Harmony’s Configuration Search Engine searches through separate
layer packs for the forward and backward pass and their correspond-
ing microbatch sizes to find the best training time configuration
that balances compute, memory, and swaps.
Wrap-Around Pipeline. These techniques taken together result
in a completely novel pipeline schedule in Harmony PP compared
to prior work [20, 45, 46]. Like GPipe and PipeDream-Flush [45],
Harmony PP also flushes the pipeline at the iteration end, thus
providing synchronous SGD semantics. Unlike prior work that pins
layers to GPUs (and with each GPU executing only one layer pack
in both the forward and backward pass), each GPU in Harmony PP
ends up executing different forward and backward layer packs en-
forced by the deterministic wrap-around schedule (e.g., in Figure 5,

GPU1 ends up executing 𝐿1’s forward and 𝐿2’s backward pass).
Binding of tasks across 𝑁 devices in the wrap-around schedule, at a
high level, can be described by the following pseudocode:

// Assumption: Task(𝑃𝐵 [i]) also performs wt. updates

𝑃𝐹𝐵 = 𝑃𝐹 + Reverse(𝑃𝐵)

for i in range(𝑃𝐹𝐵):
Task(𝑃𝐹𝐵 [i]) → GPU[i mod 𝑁] // bind task to GPU

Furthermore, with per-GPUmemory virtualization, prior approaches
have to repeatedly swap out and then swap back in weights and
gradients of layers while executing across microbatches (data paral-
lelism and PipeDream’s 1F1B); by contrast, Harmony PP groups the
executions of a layer pack across all microbatches in a minibatch
before scheduling the next layer pack on that GPU.
Intuitive Example to Highlight Advantages. To explain how
Harmony significantly reduces swap overhead, using a simplified
example we provide an analytical comparison between Harmony
and the corresponding baselines that use per-GPU memory vir-
tualization. We assume (without loss of generality) a setup with
homogeneous GPUs where each GPU’s memory capacity permits
it to only hold one layer operating on one microbatch at any time.
We also assume a simplified DNN model with one type of layer
(like Transformers) and where each layer has the same runtime and
memory footprint for its forward, backward, and update phases.

Harmony provides generalized support for swapping all tensors
across different layers where they each need to swap in/out certain
inputs/outputs (Figure 6(a)). First, we focus on a specific kind of
tensor, model weights𝑊 (with a size of |𝑊 |), to provide an intuition
for such reductions in swap overhead when training a model of 𝑅
layers (i.e., |𝑊 | = ∑𝑅

𝑗=1 |𝑊𝐿𝑗 |) with𝑚 microbatches per GPU and 𝑁
GPUs (for a minibatch of𝑚𝑁 microbatches). Figure 6(b) shows that,
for a single iteration (minibatch), when using DP with per-GPU
memory virtualization, each GPU has to swap𝑊 in and out for both
the forward and backward passes independently and this has to be
done for each of the𝑚 microbatches. At the end of the iteration, each
GPU also has to swap𝑊 in and out once for weight update. This
results in an overall swap volume of (4𝑚+2)𝑁 |𝑊 | per iteration. By
contrast, in Harmony DP (Figure 6(c)), each GPU has to swap𝑊 in
only once each for the forward and the backward passes across all𝑚

2751

L1

L2

L3

Branched Graph

L1

L2

L3

Sequential Graph

Branched
Tensor

Relay by P2P

Regular Tensor

Figure 7: Serializing layer graphs in Harmony.

microbatches (due to input-batch grouping), and swap𝑊 out once
for weight update (due to jit-scheduling), resulting in an overall
swap volume of 3𝑁 |𝑊 | per iteration.

The same swap analysis also applies to PP with per-GPU mem-
ory virtualization. But the key difference is that PP does not have
duplicated weight per GPU, canceling the 𝑁 term in the swap vol-
ume, i.e., (4𝑚 + 2) |𝑊 |. Finally, Harmony PP (Figure 5) combines
the best of the two worlds with both input-batch grouping and no
duplicated weights, bringing the overall per-iteration swap volume
down to 3|𝑊 | (across all𝑚 microbatches and all 𝑁 GPUs)!

For brevity, here we omit a full analytical comparison for all ten-
sors shown in Figure 6 and refer the reader to the extended version
of the paper [39]; suffice to say, Harmony offers swap reduction for
all tensors and Harmony PP dominates reductions in swap volume.
We empirically show the advantages of Harmony in § 5.

4 DESIGN AND IMPLEMENTATION
Harmony is implemented in Python (54K LOC) on top of PyTorch.
Next, we present the details of Harmony’s components in Figure 4.

4.1 Decomposer
Harmony’s Decomposer constructs a fine-grained layer graph from
an imperative-style PyTorch script and generates code so that each
layer can be executed individually. The main challenge is dealing
with branching in the model. Harmony overcomes this issue by
relaying the branch tensor across downstream layers using p2p
swaps until the destination layer consumes, thus minimizing CPU-
GPU swaps. We have implemented such a p2p-relaying scheme
to serialize the layer-level graph by adding identity nodes across
layers as shown in Figure 7.

Unlike prior approaches that generate code for entire pipeline
stages and bind them to a GPU early (e.g., PipeDream [45]), Har-
mony Decomposer uses the layer graph to generate code such that
each layer can be invoked individually, and it delays layer packing
and GPU binding to the downstream Harmony Scheduler.

4.2 Profiler
With the generated layer code, using a single GPU, Harmony’s
Profiler runs each layer individually and records profiles: compute
time, memory footprint, and input tensor size. Since Harmony tunes
both microbatch size and layer packs for both forward and back-
ward pass, we also need to collect profiles for each layer under
different microbatch sizes. Brute-force profiling with every possible
microbatch size is impractical. Instead, Harmony sweeps through
microbatch sizes to determine the maximum microbatch size that
does not cause out-of-memory problems by using a process sim-
ilar to TCP slow start (multiplicative increase of microbatch size,
halving at the first OoM, and then additive increase until the next
OoM). It then profiles layers for each microbatch size from 1 to this

FWD

FWD

FWD

FWD

FWD

FWD

BWD

BWD

BWD

BWD

BWD

BWD

BWD

PackSize = 4 Layers PackSize = 7 Layers

FWD

FWD

FWD

BWD

BWD

BWD

BWD

GPU1

GPU2

GPU3

GPU4

GPU1

GPU2

GPU3

GPU4
Idle

Idle

Figure 8: Greedily packing more layers to satisfy only mem-
ory capacity constraints can cause greater load imbalance
across GPUs due to coarser-granularity tasks. Configurations:
left: every 4 layers form a pack,𝑈𝐹 = 30,𝑈𝐵 = 15; right: every
7 layers form a pack, 𝑈𝐹 = 20,𝑈𝐵 = 10.

max size at fixed stride intervals. Finally, Harmony uses a simple
regression model to interpolate each layer’s characteristics for mi-
crobatch sizes that it does not sample. We validate the efficacy of
the final profiling estimation, showing that it is strikingly accurate.

4.3 Scheduler
Using the layer-granularity profiles and machine model, Harmony’s
Scheduler searches through the space of training configurations,
estimating iteration time for each configuration and picking the
fastest among them for execution by the Runtime.

4.3.1 Configuration Search Engine.
We define a configuration to be a four-tuple: <forwardmicrobatch
size𝑈𝐹 , forward layer packs 𝑃𝐹 , backward microbatch size𝑈𝐵 ,
backward layer packs 𝑃𝐵>. Unlike prior work [20, 35, 46, 63],
which either assumes the microbatch size to be specified by the
user, or fixes the microbatch size and layer packs to be the same
between the forward and the backward pass, Harmony’s Configu-
ration Search automatically determines the entire four-tuple. We
expect users to specify a mini-batch size (not the microbatch size)
as it directly affects convergence [14, 18, 31, 68]. But determining
the four-tuple above is challenging for a number of reasons.

First, both the pack size and the microbatch size of of a task
determine the memory footprint and performance when executing
the task. It is not immediately clear if one should maximize the mi-
crobatch size or the layer pack size to maximally utilize the memory
capacity of a device. Given a fixed memory capacity, increasing the
pack size can reduce p2p and CPU-GPU swap volume (especially
when using recompute [5]). Unfortunately, greedily constructing
as large a pack as can fit the memory of individual GPU results
in globally sub-optimal pipelines. Figure 8 shows such an exam-
ple of training a BERT-Large with Harmony PP; the configuration
with larger packs and smaller microbatch size (right) results in
load imbalance across GPUs and up to 2× longer idle times than a
configuration with smaller packs and larger microbatches (left).

Second, while it might be tempting to identify only backward
packs and microbatch sizes, and reuse them for the forward pass
(a scheme we term Equi-FB), this is far from optimal because the

2752

Algorithm 1: Harmony Configuration Search
Input :number of layers 𝑅, minibatch size 𝐷 ,

maximal forward microbatch size 𝑈𝐹𝑀𝐴𝑋 ,
maximal backward microbatch size 𝑈𝐵𝑀𝐴𝑋 ,
adopted packing method 𝜆 (returns layer packs 𝑃),
profiled time/memory/activation size 𝜙 ,
GPU memory capacity 𝛼 , PCIe bandwidth 𝛽 ,
Harmony mode 𝐻 , number of GPUs 𝑁 ,
task graph generator 𝜌 , runtime estimator 𝜀

Output :best configuration (𝑈 ∗
𝐹
, 𝑃∗

𝐹
, 𝑈 ∗

𝐵
, 𝑃∗

𝐵
)

// find effective maximal microbatch size

1 if 𝐻 is “Harmony DP” then
2 𝐷 ← 𝐷/𝑁
3 𝑈𝐹𝑀𝐴𝑋 , 𝑈𝐵𝑀𝐴𝑋 ← min(𝑈𝐹𝑀𝐴𝑋 , 𝐷), min(𝑈𝐵𝑀𝐴𝑋 , 𝐷)

// search for best config. with minimal time

4 (𝑈 ∗
𝐹
, 𝑃∗

𝐹
, 𝑈 ∗

𝐵
, 𝑃∗

𝐵
) ← 𝑁𝑜𝑛𝑒 // best configuration

5 𝑡∗ ←∞ // best runtime

6 for𝑈𝐵 ← 1 to𝑈𝐵𝑀𝐴𝑋 do
7 𝑃𝐵 ← 𝜆(“𝐵”, 𝑈𝐵, 𝑅, 𝜙, 𝛼) // backward packing

8 for𝑈𝐹 ← 1 to𝑈𝐹𝑀𝐴𝑋 do
9 𝑃𝐹 ← 𝜆(“𝐹 ”, 𝑈𝐹 , 𝑃𝐵, 𝜙, 𝛼) // forward packing

// from current config., generate task graph

10 𝐺 ← 𝜌 (𝑈𝐹 , 𝑃𝐹 , 𝑈𝐵, 𝑃𝐵, 𝐻, 𝑁 , 𝐷)
11 𝑡 ← 𝜀 (𝐺, 𝐻, 𝑁, 𝜙, 𝛽) // estimate runtime

12 if 𝑡 < 𝑡∗ then
13 (𝑈 ∗

𝐹
, 𝑃∗

𝐹
, 𝑈 ∗

𝐵
, 𝑃∗

𝐵
) ← (𝑈𝐹 , 𝑃𝐹 , 𝑈𝐵, 𝑃𝐵)

14 𝑡∗ ← 𝑡

15 return (𝑈 ∗
𝐹
, 𝑃∗

𝐹
, 𝑈 ∗

𝐵
, 𝑃∗

𝐵
)

forward and the backward pass for the same layer can have very dif-
ferent characteristics. For example, it is common for the backward
pass for a layer to have 2−3× the runtime and memory footprint of
the forward pass, thus motivating the need for different pack and
microbatch sizes across these passes. Our experiments show that
Equi-FB is 30% slower than picking separate values for forward and
backward packs and microbatch sizes in a four-tuple configuration.
Heuristic-based Search. The problem of finding the optimal con-
figuration that minimizes the training time can be shown to be
NP-hard3, which makes it unlikely that we can find a provably opti-
mal configuration efficiently. We address this challenge by using a
simple but effective heuristics-based search algorithm (Algorithm 1)
to identify a high-performance four-tuple configuration. We pro-
ceed roughly as follows:
• We first determine the backward layer packs 𝑃𝐵 for each back-

ward microbatch size 𝑈𝐵 (Lines 6, 7). This helps us identify the
input tensors of each pack in 𝑃𝐵 that we need to checkpoint in
the forward pass; these input tensors will be used to recompute
stashed tensors for all intermediate layers in the pack before we
start the backward-pass compute for the task [5]. We can then
use this information in determining the forward layer packs 𝑃𝐹
for each forward microbatch size𝑈𝐹 we sweep through (Lines

3We omit the hardness proof here for brevity, but refer the interested reader to the
Appendix in the extended version of this paper [39].

Algorithm 2: Balanced Time Packing 𝜆
Input : forward or backward type 𝜏 , microbatch size 𝑈 ,

number of layers to pack 𝑅 (or given packs 𝑃𝐵),
profiled time/memory/activation size 𝜙 ,
GPU memory capacity 𝛼

Output : layer packs 𝑃
1 if 𝑃𝐵 exists then
2 𝑅 ← 𝑃𝐵 .𝑅𝑒𝑚𝑜𝑣𝑒𝐿𝑎𝑠𝑡𝑃𝑎𝑐𝑘 () .𝐶𝑜𝑢𝑛𝑡𝐿𝑎𝑦𝑒𝑟𝑠 () // jit

compute

3 𝑡 ← 𝜙 (𝜏,𝑈 , 𝑅) .𝑃𝑒𝑟𝐿𝑎𝑦𝑒𝑟𝑇𝑖𝑚𝑒𝐿𝑖𝑠𝑡 ()
4 𝑚 ← 𝜙 (𝜏,𝑈 , 𝑅) .𝑃𝑒𝑟𝐿𝑎𝑦𝑒𝑟𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑖𝑠𝑡 ()

// loop num of packs from the smallest (largest packs)

5 𝑆𝑚𝑖𝑛 ←𝑚.𝑆𝑢𝑚()/𝛼
6 for 𝑆 ← 𝑆𝑚𝑖𝑛 to 𝑅 do

// find packs with per-pack time closely equal

7 𝑐 ← 𝑡 .𝑆𝑢𝑚()/𝑆 // average per-pack time

8 𝑐 ′ ← [𝑐, 2𝑐, . . . , (𝑆 − 1)𝑐] // accumulated pack times

9 𝑡 ′ ← 𝑡 .𝑃𝑟𝑒 𝑓 𝑖𝑥𝑆𝑢𝑚() // accumulated layer times

10 𝑖 ← 𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑡 ′, 𝑐 ′) // insert c’ into t’ and get

insertion points

11 𝑃 ← 𝑡 .𝑆𝑝𝑙𝑖𝑡 (𝑖).𝑇𝑜𝐿𝑎𝑦𝑒𝑟𝐼𝐷 () // packs found

// check if any pack is over capacity

12 for 𝑝 ← 𝑃 [0] to 𝑃 [𝑆 − 1] do
13 if 𝑚[𝑝] .𝑆𝑢𝑚() > 𝛼 then
14 break; continue // try smaller packs

15 return 𝑃 // balanced time and largest pack size

8, 9). Furthermore, the last layer pack is shared between 𝑃𝐹 and
𝑃𝐵 , avoiding recompute for the first backward task (jit-compute,
Line 2 of Algorithm 2).

• To reduce load imbalance across GPUs and avoid stragglers in
the pipeline, we propose a method to determine layer packs that
balances the time taken by each pack while maximizing average
pack size. Algorithm 2 outlines our method, which runs in time
O(𝑅2) (invoked by Algorithm 1 at Lines 7, 9).

• For each configuration (𝑈𝐹 , 𝑃𝐹 ,𝑈𝐵 , 𝑃𝐵) to be explored, we gen-
erate a task graph, binding each task to an individual GPU (Al-
gorithm 1, Line 10).

• We then estimate the end-to-end runtime of an iteration for
a task graph (Algorithm 1, Line 11). The estimation leverages
profiles of individual layers (𝜙) from Profiler, and performs an
event-driven simulation to capture swap, transfer, and compute
times. Simulating an iteration without actually running it on real
hardware enables fast configuration search. Later, in evaluation,
we show that these estimated times closely match real end-to-end
runs (see Figure 15).

• The search returns the configuration with the best iteration time
in the set of configurations explored (Algorithm 1, Lines 12–15).

In total, the time complexity of all steps in Scheduler (heuristic-
based search, balanced time packing, task graph generation, runtime
estimation) is O(𝑈𝐹𝑀𝐴𝑋 ·𝑈𝐵𝑀𝐴𝑋 ·𝑅(𝑅+𝐷)), where𝑈𝐹𝑀𝐴𝑋/𝐵𝑀𝐴𝑋

is the maximal possible forward/backward microbatch size, 𝑅 is
the number of layers, and 𝐷 is the minibatch size. In practice, this
end-to-end scheduling time is less than 32 seconds (see Table 1).

2753

0 2 4 6 8 10
Minibatch Size

0

25

50

75

100

125

M
em

or
y

Si
ze

 (
G

B)

(a) BERT96

0 2 4 6 8 10
Minibatch Size

0

100

200

300

(b) GPT2

GPU Capacity
Weights

Weight Gradients
Buffers

Optimizers
Activations & Grads

Figure 9: Memory footprint statistics for training massive
models (using virtualized GPU memory).

4.3.2 Task Graph Generation.
A task is the unit of execution in Harmony. Figure 5 shows the
three types of tasks: Forward, Backward, andWeight Update. Each
task is associated with a layer pack and a microbatch size (the result
of configuration search). Each task is bound to a specific execution
backend (GPU device or CPU process). For instance, the second
task in Figure 5, bound to GPU#2, is a Forward task for layer pack
[2,3] with 𝑈𝐹=10 and a group of two microbatches. Each task also
specifies the required inputs and outputs to be swapped in and out,
respectively, along with the channels they ought to be transmitted
on. For the same example, the task specifies its two inputs: tensor
L1 Output over a Peer2Peer input channel, and L2-3 Weight tensors
over a CPU-GPU Swap channel. The complete list of inputs/outputs
to be swapped is shown in Figure 6(a), where each input/output can
choose from one of the four channels: CPU-GPU Swap, Peer2Peer,
Message Passing, and Shared Memory. Putting together the tasks
of an entire iteration results in a task graph, where each node is
a task and each edge is the specified input/output between tasks.
Such task graphs are used to drive the Harmony Runtime.
Harmony DP and PP. Using the task graph, Harmony is able to
schedule a variety of distributed training schedules; it does this by
unrolling an iteration’s tasks across GPUs. Harmony can support
conventional Data Parallel and Pipeline Parallel training, both en-
hanced with per-GPU memory virtualization (that we hereafter call
per-GPU swap). Crucially, it supports two new schedules, Harmony
DP (Figure 6) and Harmony PP (Figure 5) – both these schemes
benefit from Harmony’s four key optimizations.

4.4 Runtime
Harmony’s Runtime executes in CPU processes, one for each GPU
in the deployment. This 1:1 mapping is required to enable effective
concurrency and overcome the limitations of the Python GIL. Each
runtime process can also be pinned to a CPU core on a socket which
has NUMA affinity to the GPU it controls. All tasks run on GPUs,
but Harmony also supports the Weight Update task being offloaded
to the CPU. Each runtime process executes the ordered list of tasks
in the unrolled task graph handed to the Runtime by the Scheduler,
and repeats it for all training iterations.
CUDA Streams and CUDA Events. To effectively utilize the GPU
and overlap computation and communication, Harmony uses 5
distinct CUDA streams: one each for compute, swap-in, swap-out,
p2p-in, and p2p-out on every GPU. We use CUDA events across

streams to synchronize for task dependencies. The swap and p2p
streams are managed by background CPU runtime threads for pre-
allocating CPU tensors, prefetching GPU tensors for upcoming
tasks, waiting for swap completion and tensor transfers. Prefetching
uses extra GPU memory to overlap swaps/transfers with compute
and uses double buffering to avoid repeated allocations.
Memory Manager. In PyTorch, each CUDA stream can allocate,
free, and reuse its own memory. While streams can share memory
buffers, memory reuse is private to each stream (e.g., the memory
freed by stream A is not reusable by stream B); such private reuse
can shrink the effective memory available to individual streams. To
overcome this limitation, Harmony’s Runtime employs a “central”
memory manager on the compute stream and allows it to manage
memory for all streams with an unified memory pool.

5 EVALUATION
5.1 Experimental Setup
Configurations.We run experiments on three server configura-
tions. Two of them are commodity servers with four and eight
GTX-1080Ti GPUs (11 GB each) [2, 49], and 18-core (375GB DRAM)
and 36-core (750GB DRAM) 2.3GHz Xeon CPUs [25], respectively.
The third server is an NVIDIA DGX-2 with 16 V100 GPUs (32GB
each), 96-core Xeon CPU (1.5TB DRAM), and NVSwitch [48, 52].
On all servers, GPUs are connected to CPU via a PCIe tree as in
Figure 3a, where each link is a 16-lane PCIe3 (16GB/s per direction).
All results shown are with PyTorch 1.5, NCCL 2.4, CUDA 10.1, and
FP32 precision. Unless explicitly stated, we show evaluation results
on the commodity server configuration with four GTX-1080Ti GPUs.
Models. Our evaluation uses the following DNN models:

• Two BERT variants: BERT-Large (24 transformer layers) [8]
and BERT96 (96 transformer layers) [46]. Both models use a
sequence length of 512 and training uses the GLUE dataset [65]
with an Adam optimizer.
• Three GPT2 variants: GPT2 (the default model with 1.5B param-

eters) [57], GPT2-Medium (0.3B) [43], and customized GPT2
models (10s Billion) [59]. All are trained with a sequence length
of 1024 on WikiText dataset [42] and an Adam optimizer.

• VGG416. This is a variant of the classic VGGmodel scaled to have
416 layers and has been used for evaluating per-GPU memory
virtualization in prior work [17, 32, 61]. It is benchmarked for
training using the ImageNet [7] dataset with a SGD optimizer.

• ResNet1K. Another CNN, a ResNet variant [16, 29], used for
evaluating per-GPU memory virtualization in prior work [5, 28].

Memory Footprint. The working set size of these models exceeds
the combined memory capacity of our GPUs; the memory footprint
far exceeds the capacity of an individual GPU for even the smallest
batch sizes. Figure 9 analyzes the memory footprint of training two
massive models at different batch sizes and also breaks down the
memory footprint into important components (weights, gradients,
etc.). The memory footprint analysis of other models is similar.
Per-GPU Swap Baselines. Given the prohibitive memory re-
quirements mentioned above, we enhance existing approaches for
parallel DNN training, such as Data Parallelism (DP) [37], GPipe
(GP) [20], and PipeDream-2BW (2BW) [46], to incorporate per-GPU

2754

16 64 256
Minibatch Size

0

2

4

6

8

10

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1.0 1.3 1.61.5 1.6 1.6
2.2

3.1 3.5

2.2 2.2 2.12.4 2.7 2.8

4.2

7.7

8.8

6.5

9.5
10.3

(a) BERT96

16 64 256
Minibatch Size

0

2

4

6

8

1.0 1.2 1.31.4 1.4 1.4
1.9

2.9 2.8

1.8 1.8 1.82.0 2.1 2.1

5.5

7.5
8.2

7.6

8.5
8.8

(b) GPT2

16 64 256
Minibatch Size

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1.0 0.9 0.91.0
0.9 0.9

1.2 1.1
1.3

1.0 1.0 1.0

1.4 1.4 1.4
1.2

1.8

2.2

1.7

2.2

2.6

(c) VGG416

64 256 1024
Minibatch Size

0

1

2

3

4

5

6

1.0 1.1
1.4

1.1 1.3 1.41.4 1.5 1.6
1.1 1.3 1.41.3 1.5 1.6

1.8

3.7
4.2

3.3

4.7

6.3

(d) ResNet1K

DP Swap GP Swap GP Swap (R) 2BW Swap 2BW Swap (R) Harmony DP Harmony PP

Figure 10: Performance comparison with per-GPU swap baselines by training different models with various minibatch sizes on
4 GPUs. Each group of bars represents one minibatch size. R denotes the usage of recompute for activations. Throughput is
normalized against DP Swap at the smallest minibatch size (i.e., the leftmost bar).

memory virtualization using IBM-LMS [23, 24]. As a result, we con-
struct new viable baselines for comparison to Harmony: DP Swap,
GP Swap, and 2BW Swap. Furthermore, we augment these baselines
with memory optimizations: 1) gradient accumulation [46], 2) in-
place operations and memory reuse [5, 66], and 3) other memory
buffer optimizations. While Harmony always uses recompute [5]
to cut the memory of stashed activations, we also enable GP Swap
and 2BW Swap to use recompute, thus creating additional baselines
GP Swap (R) and 2BW Swap (R) respectively.
ZeRO-Infinity. We also compare against ZeRO-Infinity [59], a
recent swap-based DP enhancement that supports moving state
between CPU and GPU memory, offloads weight update to CPU,
and shards model state across GPUs only to swap in every layer’s
state when required for (re)compute on each GPU. ZeRO-Infinity
also includes NVMe storage devices in the memory hierarchy, if
available (e.g., high-end DGX-2 servers [52]). In this paper, we only
consider massive models whose working set fits in CPU memory
and thus Harmony does not use storage devices for swaps (many
commodity servers lack fast NVMe devices).
Goal. We seek to answer the following questions in evaluation:
• How does Harmony compare to baselines, with respect to train-

ing throughput and swap overhead? (§ 5.2-5.3)
• Is Harmony training correct (converges as baseline)? (§ 5.4)
• How much does each of our optimizations contribute? (§ 5.5)
• How does Harmony’s Scheduler perform? (§ 5.6)
• How does Harmony scale with model sizes and GPUs? (§ 5.7)

5.2 Comparison with Per-GPU Swap Baselines
Figure 10 compares Harmony with per-GPU swap baselines for
different minibatch sizes. We highlight five key takeaways:

First, for any given minibatch size, DP Swap consistently un-
derperforms other approaches – unsurprisingly, given that each
of the 4 GPUs is swapping the entire model state back and forth to
CPU memory including unnecessary and repeated swaps across mi-
crobatches (§ 2). Figure 11 further reveals that DP Swap dominates
the swap volume over other approaches.

Second, GP Swap is consistently worse than 2BW Swap not just
due to swap load but also due to pipeline flushes in GPipe. But
because swap overheads dominate, the gap between GP Swap and
2BW Swap is less dramatic than when the model fits the collective
memory capacity of all GPUs [46]. The baselines using recompute,
GP Swap (R) and 2BW Swap (R), performmuch better than their
no-recompute counterparts (GP Swap and 2BW Swap) across all
models and batch sizes, and this can be directly attributed to the
reduced swap overheads due to recompute, which indicates that
swap overhead dominates over compute cost. Figure 11(a) shows
this reduction in swap overheads.

Third, Harmony DP benefits from input-batch grouping, jit-
scheduling, and layer packing, significantly outperforming
all baselines (Figure 10), with speedups up to 2.4× ∼ 7.0× for all
models. Harmony DP’s swap overheads are an order of magnitude
lower than DP Swap (Figure 11).

2755

0 1 2 3 AVG
GPU ID

0

50

100

150

200

Sw
ap

 V
ol

um
e

(G
B) 174 175 172 174 174

98
87 87

117
97

77 69 70
84

75

123

98 98

126
111

82
72 74

126

89

11 11 11 11 11
1 2 2 2 2

(a) Per-GPU comparison at minibatch size 16

16 64 256
Minibatch Size

0

2000

4000

6000

8000

10000

G
lo

ba
l S

w
ap

 V
ol

. (
G

B)

694

2376

9245

387

1550

6199

300 695

3234

445

1748

7062

355
1274

4953

45 49 617 12 30

(b) Comparison under different minibatch sizes

DP Swap GP Swap GP Swap (R) 2BW Swap 2BW Swap (R) Harmony DP Harmony PP

Figure 11: CPU-GPU swap volume comparison of different approaches for training GPT2 on 4 GPUs. Swap volume is measured
per minibatch. Global swap volume aggregates swap volume across all GPUs.

16 64 256
Minibatch Size

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1.0 1.1 1.1

1.6

2.2
2.4

2.2
2.5 2.6

(a) Performance

0 1 2 3 AVG
GPU ID

0

5

10

15

20

25

Sw
ap

 V
ol

um
e

(G
B) 24 24 24 24 24

11 11 11 11 11

1 2 2 2 2

(b) Swap load at minibatch size 16

16 64 256
Minibatch Size

0

500

1000

1500

G
lo

ba
l S

w
ap

 V
ol

. (
G

B)

96

405

1639

45 49 617 12 30

(c) Global Swap load

Zero Infinity Harmony DP Harmony PP

Figure 12: Comparison with ZeRO-Infinity for training GPT2 (1.5B) on 4 GPUs. Throughput is normalized against ZeRO-Infinity
at minibatch size 16 (i.e., the leftmost bar). CPU-GPU swap volume is measured per minibatch.

Fourth, Harmony PP is consistently the fastest approach
across all models andminibatch sizes (Figure 10), with speedups
up to 2.8× ∼ 7.6× over DP Swap. It is up to 1.5× faster thanHarmony
DP, further benefiting from pipeline parallelism (eliminating all re-
dundancy in CPU-GPU swaps) and p2p swaps, with a swap volume
that is two orders of magnitude lower than DP Swap (Figure 11).

Fifth, across all models, Harmony’s speedup over baseline ap-
proaches widens with larger batch sizes. This is primarily fuelled
by reduced swap load due to input-batch grouping in Harmony. Fig-
ure 11(b) shows that while swap load proportionally goes up for
all approaches as we increase batch size, the swap volume across
all GPUs is 100× ∼ 300× higher for per-GPU swap baselines com-
pared to Harmony, thus resulting in a flatlining of throughput for
baselines (Figure 10).

5.3 Comparison with ZeRO-Infinity
We now compare Harmony to ZeRO-Infinity on our deployment.
ZeRO-Infinity suffers from coarse-grained scheduling and lacks op-
timizations such as input-batch grouping and configuration search
for principled layer packing. For a fair comparison, in our eval-
uation, we make ZeRO-Infinity share the same configuration as
Harmony (i.e., minibatch size, microbatch size, pack size for recom-
pute) that Harmony finds and enable all its relevant optimizations.
Figure 12(a) shows that Harmony DP and PP are up to 2.3×
and 2.5× faster than ZeRO-Infinity, respectively, for GPT2. Har-
mony’s throughput speedup widens as the minibatch size increases.

Figures 12(b,c) show that this speedup can be directly attributed
to an order-of-magnitude lower swap load in Harmony with input-
batch grouping (and p2p swaps in Harmony PP).

5.4 Correctness of Training in Harmony
Harmony provides synchronous SGD semantics and should leave
convergence properties of models unchanged compared to settings
where the entire model would fit in memory. To validate this, we
compare the training loss for every minibatch in Harmony (with
swaps) with the equivalent training loss of a baseline scheme with-
out swaps, when using the same hyper-parameters and for models
that can fit in GPU memory. Harmony PP provides a single-GPU
abstraction, and hence we compare it to accuracy results from
single-GPU runs. In Figure 13, fine-tuning results of BERT-Large
on downstream MRPC tasks show a perfect match in loss values
for every minibatch between Harmony’s schemes and baseline
runs. We also achieve perfect match in the final evaluation accuracy
of the trained model: 88.0% across Harmony and baseline runs.

5.5 Efficiency Breakdown of Harmony
Figure 14 analyzes the efficacy of Harmony’s optimizations. We
highlight five key takeaways. First, input-batch grouping signifi-
cantly reduces swap load and increases arithmetic intensity; with-
out this optimization iteration times are 2.2× and 1.5× slower
in Harmony DP and PP respectively. Second, expert (manually)
picked layer packs and microbatch sizes for even repeated-structure

2756

50 100 150 200 250 300 350
Iteration (MiniBatch)

0.0

0.2

0.4

0.6

Lo
ss

 p
er

 M
in

iB
at

ch

Harmony (1 GPU) Harmony PP (4 GPU) Baseline (1 GPU)

(a) Harmony vs. single-GPU baseline.

50 100 150 200 250 300 350
Iteration (MiniBatch)

0.0

0.2

0.4

0.6

Lo
ss

 p
er

 M
in

iB
at

ch

Harmony DP (4 GPU) Baseline DP (4 GPU)

(b) Harmony vs. data-parallelism baseline.

Figure 13: Correctness of Harmony. An example of fine-
tuning BERT-Large on MRPC of GLUE with reported hyper-
parameters [8] and baseline code [21]. Harmonymatches the
baseline exactly for every minibatch.

Harmony DP Harmony PP
0

1

2

N
or

m
al

iz
ed

 T
im

e

1.0 1.0

2.2

1.51.3 1.41.3 1.21.1 1.21.0 1.21.1 1.1

All Optimizations On
Input-Batch Grouping Off
Configuration Search Off
Tensor Prefetch Off

JIT Scheduling Off
P2P Swaps Off
Optimizer Offload Off

Figure 14: Efficiency breakdown of Harmony for training
GPT2 on 4 GPUs. Each bar shows the resulting slowdown
when turning off only one optimization while keep others
on. Y-axis is normalized against “All Optimizations On” for
Harmony DP and PP separately. Higher is worse.

transformer-based DNNs result in 1.3–1.4× worse throughput com-
pared to Harmony’s automated configuration search. Third, forgo-
ing tensor prefetch can result in up to 1.3× slower iteration times.
Fourth, excluding jit scheduling and optimizer offload can individu-
ally degrade throughput by up to 1.2×, although optimizer offloading
seems to be less critical. Fifth, p2p swaps don’t provide any benefits
for Harmony DP, but Harmony PP which actively uses GPU-GPU
swaps across layer packs in the pipeline can suffer degraded itera-
tion times by as much as 1.2× when disabling p2p swaps.

5.6 Scheduler and Configuration Search
To evaluate the effectiveness of Harmony Scheduler, we measure its
end-to-end time including iterative configuration search, task graph
generation, and runtime estimation, until the best configuration

Table 1: Configuration search results and Scheduler end-to-
end time (config search, task graph generation, runtime esti-
mation) with Harmony PP (4 GPUs, minibatch size 64).

Model BERT96 GPT2 VGG416 ResNet1K

𝑈𝐹 16 4 8 32
|𝑃𝐹 | 24 10 15 2
𝑈𝐵 16 4 8 32
|𝑃𝐵 | 25 17 16 9

Time (s) 1.4 0.7 17.7 31.6

RM SM TM
�E�s�t�i�m�a�t�e�d� �T�i�m�e� �(�s�e�c�)

RM

SM

TM

�A
�c

�t�
u�

a�
l�

�T
�i�

m
�e

� �
(�

s�
e�

c�
)

EQMIRIUIQF

EQMISINOISF
ERMIUINMIRF

EOMIOIRIOF

EQMIQIQIOF

�I�d�e�a�l �H�a�r�m�o�n�y� �P�P� �C�o�n�f�i�g�.

Figure 15: Accuracy of Harmony’s Runtime Estimator. We
compare estimated iteration time with actual time for train-
ing BERT-Large with a mini-batch size of 600 on 4 GPUs
using Harmony PP. Each dot represents a Harmony configu-
ration (𝑈𝐹 , |𝑃𝐹 |,𝑈𝐵, |𝑃𝐵 |) and the 15 points here are sampled
randomly from all the configurations thatHarmony explores.
The relative difference between estimated and actual time is
within 5% on average.

is selected. Table 1 shows that reaching the best configuration
takes at most 32 seconds. For transformers, it is about 1 second;
CNNs like ResNet1K are much deeper and richer in diversity of
layer attributes (memory size and compute time).

Figure 15 evaluates the quality of Harmony’s Runtime Estimator.
It compares the estimated training time with actual training time
in each searched configuration. Estimated training time is obtained
from Harmony’s event-driven simulator (§ 4.3.1); for each configura-
tion, the simulator uses a Harmony task graph and layer profiles for
estimating end-to-end iteration time. We observe that Harmony’s
estimates are accurate, giving us confidence in its selection of con-
figurations with the best throughput.

5.7 Scaling Model Size and Number of GPUs
To evaluate how Harmony scales, we now use two beefier servers
as mentioned in § 5.1 – i) a server with eight GTX-1080Tis (11GB)
and ii) a DGX-2 with 16 V100 GPUs (32GB). We use this setup
to understand not only the limits of how large a model Harmony
can train given CPU memory capacity bounds but also Harmony’s
scalability in number of GPUs. We customize the GPT2 model to
scale up to tens of billions of parameters [59].

First, we study the limit of trainable model size. Figure 17 shows
the throughput of training suchmodels on an 8×GTX-1080Ti server.
For fairness, ZeRO-Infinity shares the same configuration as Har-
mony and with all optimization flags on. For the 10∼30-billion

2757

