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Abstract

The rapid increase in sizes of state-of-the-art DNN models, and consequently the
increase in the compute and memory requirements of model training, has led to the
development of many execution schemes such as data parallelism, pipeline model
parallelism, tensor (intra-layer) model parallelism, and various memory-saving
optimizations. However, no prior work has tackled the highly complex problem
of optimally partitioning the DNN computation graph across many accelerators
while combining all these parallelism modes and optimizations. In this work, we
introduce Piper, an efficient optimization algorithm for this problem that is based
on a two-level dynamic programming approach. Our two-level approach is driven
by the insight that being given tensor-parallelization techniques for individual
layers (e.g., Megatron-LM’s splits for transformer layers) significantly reduces the
search space and makes the global problem tractable, compared to considering
tensor-parallel configurations for the entire DNN operator graph.

1 Introduction

Deep Neural Network (DNN) models have grown exponentially in size over the past two decades;
consequently, modern DNNs are extremely computationally expensive. For example, a state-of-the-
art language model, GPT-3 [2], has an astounding 175 billion parameters, requiring 314 ZettaFLOPS
(3.14× 1023 FLOPS) of compute.

This trend of computationally expensive models with working-set sizes for training and inference
that far exceed the memory capacities of individual DNN accelerators (e.g., GPUs, TPUs, FPGAs,
ASICs) has reinvigorated the study of parallel training techniques that split DNN model state across
different devices. In the “modern era”, such model-parallel training techniques trace their roots
back to AlexNet [14] and early influential systems such as DistBelief [6] and Project Adam [3].
Recent advances in model-parallel training include tensor (intra-layer) model parallelism [22],
where individual operators of the model are partitioned over multiple workers, and pipeline model
parallelism that combines inter-layer model parallelism with pipelining [17, 18, 11]. Various hybrid
parallelism techniques that combine tensor, pipeline, and data parallelism across operators [13, 19]
have also been developed to more efficiently train a wider range of models. Additionally, memory-
saving optimizations like activation recomputation, which trade off throughput for memory, are also
being used [18] to scale training to larger models such as GPT-3.

Combining these dimensions, however, is non-trivial [19], since each dimension has trade-offs with
respect to computational efficiency, amount of communication, and memory footprint. Given the
importance of efficient model-parallel training (and inference [7, 4]), partitioning a model across
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devices has thus received recent interest, evolving from a manual process driven by human experts to
using algorithms for automated device placement of DNN operators. Focusing on algorithms, some
take a black-box approach using learning-based techniques [16, 15, 8, 1, 26, 21, 25]; others build a
cost model and algorithmically solve an optimization problem [12, 17, 18, 13, 23]. However, each
of the prior algorithmic approaches tackle a slightly different subset of parallelization techniques,
system constraints, and DNN optimizations; for example, FlexFlow [13] does not consider pipelining,
PipeDream [17] does not consider memory-saving optimizations that are useful for training large
models, and PipeDream and PipeDream-2BW [18] both do not consider tensor parallelism.

Our contribution. In a first, this paper covers a broad search space of parallelization and optimiza-
tion techniques while determining placement of DNN layers on the provided hardware deployment (a
given number of accelerators of a specific type with certain performance characteristics, memory ca-
pacity, and interconnect bandwidth). Specifically, our optimization algorithm, called Piper, considers
three different dimensions of parallelism (data, tensor model, and pipeline model parallelism), and
a general framework of memory-saving optimizations that trade off throughput for lower memory
footprint. In this work, we consider pipeline parallelism schedules without pipeline flushes [17, 18].
We leave extensions to pipeline parallelism schedules with flushes [11, 19] to future work.

The focus of our work is on algorithms for DNN partitioning across devices to maximize throughput
(for training and large-batch inference of DNN models). Piper uses non-trivial combinations of
data, tensor, and pipeline parallelism, as well as memory-saving optimizations such as activation
recomputation, carefully chosen for each stage of the partition. Piper supports general DAG (Directed
Acyclic Graph) model topologies and is agnostic of the type of DNN accelerator used. Piper is
given a target “safe” batch size (e.g., 1920 for large GPT-style models [20]) and returns a training
configuration with this batch size. It is efficient both in theory and in practice.

In Section 5, we evaluate Piper on real-world DNN profiles, and study the effects of combining the
various parallelism modes and memory-saving optimizations on performance. We find that Piper’s
large search space combined with its principled algorithmic approach allows it to find non-trivial
high-quality parallelization configurations for each given problem instance. Piper compares favorably
to planners from prior work (PipeDream, PipeDream-2BW). For example, we find (as expected) that
in many settings, pipeline model parallelism combined with per-shard data parallelism is enough to
obtain high throughput; however, tensor parallelism is also required when one needs a batch size
smaller than the number of devices, as well as in highly memory-constrained settings. Piper’s ability
to form heterogeneous stages also gives it an advantage over prior work.

2 Background

In this section, we briefly describe methods to train models at scale.

2.1 Pipeline model parallelism

Pipeline model parallelism is a recent technique [17, 11] used to accelerate the distributed training of
both small and large models. The operators of a model are partitioned over the available devices (i.e.,
each device hosts a subset of the operators of the model; typically these subsets are contiguous). A
batch is then split into smaller microbatches, and execution is pipelined across these microbatches:
while the second device starts executing the first microbatch, the first device starts executing the second
microbatch, and so on. Pipeline model parallelism features cheap point-to-point communication.

A key problem with deploying pipeline parallelism is determining how to schedule forward and
backward microbatches on the available devices, and how to stash state to ensure a final high-quality
model. Different schedules have different throughput, memory footprint, and semantics trade-offs.
For example, GPipe [11] maintains just a single weight version, but introduces periodic pipeline
flushes where microbatches in the pipeline are allowed to drain. This leads to idle resources and lower
throughput, but also lower memory footprint. PipeDream [17] maintains a weight version for every
in-flight input microbatch, but does not use pipeline flushes, leading to both high throughput and
memory footprint. PipeDream-2BW [18] tries to find a middle ground, where gradients are coalesced
across microbatches, reducing the number of weight versions, while still keeping throughput high. In
this work, we assume that a non-flushing pipelining scheme is used when considering pipelines with
multiple stages (i.e., we do not use inter-layer model parallelism without pipelining).
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2.2 Tensor (intra-layer) model parallelism

A model can be partitioned in other ways as well. Megatron-LM [22] slices transformer blocks in
NLP models like BERT and GPT across available devices, in effect performing distributed matrix
multiplications. All-to-all communication in the form of scatters, gathers and all-reductions needs
to be performed to ensure that these distributed operators retain their semantics. Megatron-LM
uses a specific, hand-tuned strategy to distribute transformer layers across multiple GPUs. Tensor
parallelism reduces per-device memory usage, as model parameters are split across devices, and
shows good scaling performance when using high-bandwidth interconnects like NVLink [19].

Trying to find an optimal tensor parallelization strategy for the entire model by deciding how to split
every operator is a highly challenging problem with a large search space, and requires understanding
the semantics of each operator. Modern models consist of a large number of operators, often with
considerable branching. Moreover, each operator can be split in many different ways. For example, a
matrix multiplication can be split over the rows or columns of the left (input) matrix or right (weight)
matrix, or a combination of these. Some splits will require inserting an all-reduction operator to
recover the result, and some will require an all-gather. Some will divide weights across devices, which
helps with memory usage. The optimal split in terms of latency depends on the matrix dimensions
and also downstream operators; a matrix multiplication split over some dimension would accept input
tensors split over the same dimension, but a dropout operator requires the entire input tensor.

2.3 Data parallelism

Data parallelism is the de-facto way of parallel training today. With data parallelism, every worker
has a copy of the full model. Inputs are sharded, and each worker computes weight gradients
independently. Periodically, these weight gradients are aggregated using all-to-all communication or
a parameter server. Vanilla data parallelism assumes that model parameters fit on a single device. For
large models, data parallelism can be used on model shards; gradients need to only be exchanged
among devices responsible for the relevant model shard. Data parallelism can be used with both
pipeline (as shown in PipeDream [17]) and tensor model parallelism (as shown in Megatron-LM [22]).

2.4 Memory-saving optimizations

When training large models, it is common to use memory-saving optimizations that trade off a
reduction in throughput for a lower memory footprint. One example is activation recomputation,
where the intermediate activations produced during the forward pass are not stored. Instead, the
forward pass is performed a second time, just before the backward pass, from a stashed input
activation, which is much smaller than the full set of intermediate activations. This drastically reduces
the footprint of pipelined training, at the cost of executing the forward pass twice.

2.5 Related work on algorithms for partitioning and placement of DNN graphs

A number of systems have looked at the problem of partitioning DNN models across devices.
However, each of these systems considers a subset of the parallelism dimensions considered in this
paper. FlexFlow [13] considers many dimensions (data, tensor, and inter-layer model parallelism),
but not pipelining; moreover, it uses a heuristic MCMC-based approach that requires domain
knowledge to be encoded into the “parallel plan” generator. PipeDream [17] and Tarnawski et
al. [23] use dynamic programming and consider a combination of pipeline model parallelism and data
parallelism; however, they support different model topology classes. PipeDream supports only linear
(path) graphs while [23] supports general DAGs. While PipeDream is oblivious to memory usage,
its enhancement, PipeDream-2BW [18], targets large models that do not necessarily fit on a single
accelerator. Exploiting the repetitive structure of some of these large models, such as transformer-
based language models, PipeDream-2BW’s planner only considers configurations where every stage
in the pipeline is replicated an equal number of times (equi-replicated stages), thus simplifying
the search for parallelization configurations. PipeDream-2BW’s planner also explicitly considers
per-device memory capacity constraints and includes activation recomputation in its configuration
search space. None of these three approaches consider tensor parallelism.

Learning-based approaches (Mirhoseini et al. [16, 15], Spotlight [8], Placeto [1], GDP [26], RE-
GAL [21]) treat the objective (latency or throughput) as a black box to be optimized using RL;
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runtimes are measured in an online fashion on the target system, which is very accurate but computa-
tionally expensive. Moreover, some of them optimize for latency or peak memory usage rather than
throughput, and they do not explicitly consider splitting individual operators or pipelining.

All existing algorithms, except PipeDream-2BW, also do not consider memory-saving optimizations,
that trade off throughput for reduction in memory footprint, in combination with different modes of
parallelism; activation recomputation is one such important optimization. These optimizations are
commonly needed for training models that exceed the memory capacities of modern accelerators.

3 Problem Setup

In this section, we describe the search space of parallelization configurations that Piper explores, as
well as the objective function (cost model) that we minimize in order to find the best solution. These
give rise to the description of the optimization problem that Piper solves.

Piper is given as input a DNN workload (model) which is represented as a Directed Acyclic Graph
(DAG), G = (V,E). Each node corresponds to a single DNN layer such as LSTM or transformer
(each layer is composed of lower-level operators, e.g., matrix multiplications or additions). Each
edge (u, v) corresponds to a data transfer: node/layer v requires the output of u as its input. The
input graph is annotated with a number of attributes related to compute times, communication costs,
and memory usage; we introduce and motivate these attributes in this section, and then formally list
them in Section 3.6. To obtain an input to be supplied to Piper, these attributes should be profiled (or
estimated). Furthermore, Piper is given: the number of devices (K), available memory per device
(M ), the network bandwidth (B), and the target number of microbatches in a batch (N ). N is the
ratio of the chosen batch size (usually the maximum that is safe for convergence, e.g., 1024–2048 for
large transformer-based LMs) to the provided microbatch size.

3.1 Space of configurations

Piper’s search space consists of partitions of G into consecutive contiguous subgraphs, also called
stages, which are executed using disjoint sets of devices. Each node/layer is assigned to exactly one
stage. Each stage is executed using some number d · t of devices, combining data parallelism of
degree d with tensor parallelism of degree t. That is, we want to find a partition V = S1 ∪ ... ∪ S`
and, for each stage i = 1, ..., `: (a) the degree di of data parallelism, (b) the degree ti of tensor
parallelism, (c) further configuration: how (for each layer in the subgraph) the tensor parallelism is
carried out, as well as what other optimizations are used.

Thus the i-th stage will be run on di · ti devices, and so we must have
∑`
i=1 di · ti ≤ K. Furthermore,

each stage should be feasible in terms of memory usage, the sum of data-parallel degrees (
∑`
i=1 di)

must be at most N (in order to saturate the pipeline), and we need di to divide N (to be able to divide
microbatches evenly among the data-parallel replicas). We call this output a solution. We use the
definition of contiguity from [23] (see Fig. 6 in the Appendix for an illustration):

Definition 3.1 We say that a set S ⊆ V is contiguous if there do not exist nodes u ∈ S, v ∈ V \ S,
and w ∈ S such that v is reachable from u and w is reachable from v.

3.2 Time-Per-Sample

Our objective is to maximize throughput; equivalently, we minimize its inverse, the Time-Per-
Sample (TPS). For non-flushing pipeline execution schemes such as PipeDream or PipeDream-2BW,
it has been argued [23] as well as shown in practice [17] that the Time-Per-Sample of a solution equals
the maximum Time-Per-Sample of a device. The problem of finding a solution with minimal TPS
(absent data or tensor parallelism and other optimizations) was addressed by Tarnawski et al. [23]; in
that model, which we extend, the TPS of a device/subgraph is given as the sum of compute times
of all nodes in the subgraph, plus costs of communication along edges coming into or leaving the
subgraph. We now discuss how to incorporate the modes of parallelism from Section 2 into the
model.
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3.3 Tensor Model Parallelism Configurations (TMPCs)

As we remarked in Section 2.5, the task of making a global, joint decision about how to tensor-
parallelize every operator in a DNN computation graph is very complex. In this work we therefore
reduce this task to the problem of coming up with good tensor parallelization techniques for individual
layers. Solving the latter problem is not a goal of Piper; instead, we assume that we already know
(i.e., Piper is given as input) some number of good tensor parallelism configurations (for some layers
v and some degrees t of tensor parallelism). In practice, such configurations can be devised by hand
(as done e.g. for transformer layers in Megatron-LM [22]; we use their technique in our experimental
evaluation), or the problem can be attempted using automated methods similar to e.g. FlexFlow [13]
or Tofu [24] or RL-based approaches. This problem has to only be solved for each layer type, e.g.,
even if the input DNN has many transformer layers, one just needs a good technique for a transformer
layer. It is also not necessary to provide configurations for all layers v and possible degrees t. On the
other hand, there could be many reasonable tensor parallelism configurations for the same v and t;
for example, there might be a trade-off between memory usage and runtime.

For each available configuration, Piper gets as input certain attributes related to compute, communica-
tion and memory costs for the target model (listed formally in Section 3.6). A tuple containing these
attributes is called a Tensor Model Parallelism Configuration (TMPC). Piper receives a (possibly
empty) list T (v, t) of TMPCs for each node v and degree t of tensor parallelism (including t = 1).
Memory-saving optimizations (e.g., activation recomputation) are modeled using TMPCs as well.1

3.4 Data parallelism

Consider a stage that is data-parallelized across d > 1 devices. Following PipeDream [17], we model
the effect of this on TPS as follows. The compute load of the stage is spread evenly across devices
(with a factor 1/d). However, data-parallel execution necessitates periodic synchronization of weight
gradients, which has a total communication cost of 4(d−1)w, where w is the size of parameters in all
layers in the stage. This gives a cost of 4 · d−1d · w bytes per device (per batch, i.e., N microbatches).

3.5 Memory usage in pipelined configurations

With pipelining, every stage needs to store some number of weight and activation versions; these
depend on the number of in-flight microbatches (per data-parallel replica). Specifically, the memory
usage of a stage can be modeled as an affine function of this number. That is, for every stage with
data-parallel degree d and suffix sum of data-parallel degrees s, memory usage would be a · ds/de+ b
for appropriate coefficients a and b. See Appendix A for an explanation. E.g., in PipeDream-style
execution, a would be the size of weights plus the size of all activations in the subgraph, and b would
be the size of optimizer state and temporary buffers. PipeDream-2BW uses only two stashed weight
versions instead of ds/de many, so the size of weights would contribute only to b (multiplied by 2),
not a. If activation recomputation is used, then a accounts for only the sizes of input activations of
every layer, and b accounts for all other activations. This accounting is more precise than PipeDream’s,
which ignores memory usage, or Tarnawski et al.’s [23], which uses a constant function.

3.6 Input and output

Now we can formally (re-)state Piper’s input:

• a Directed Acyclic Graph G = (V,E): layer graph of a DNN,
• for every edge (u, v) ∈ E, an associated communication cost c(u, v) (in bytes),
• number K of devices, memory M per device, network bandwidth B, [maximum] number
N of microbatches in a batch,

• for every node/layer v ∈ V , and every degree t = 1, ...,K of tensor parallelism: a (possibly
empty) list T (v, t) of TMPCs (see Section 3.3).

The description of a TMPC in T (v, t) must correspond to a tensor parallelism configuration where,
for both the forward and the backward pass, each of the t devices start execution already with a full

1As an example, a node v might have the following TMPCs as input: for t = 1, one TMPC corresponding to
regular execution, and another with activation recomputation; and for t = 8, one TMPC corresponding to tensor
parallelization in dimension 1 and another using dimension 2, with and without activation recomputation (four
in total).
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copy of each input activation, and must end execution having in its memory a full copy of every
output activation (see Appendix B for a discussion). Each TMPC description X ∈ T (v, t) contains:

• a Time-Per-Sample X.p that encompasses the compute time together with the communica-
tion costs of tensor parallelism (data transfers between the t devices),2

• for every incoming edge (u, v) ∈ E, a communication cost X.cfw(u, v) (in bytes) that it
would take to synchronize the tensor incoming over that edge between t devices (going from
a state where one device has the tensor to a state where all t have it); for more explanation
and motivation of this, see Appendix B,

• an analogous quantity X.cbw(v, w) for every outgoing edge (v, w) ∈ E,
• the size X.w (in bytes) of parameters/weights on each device,
• memory usage: two amounts X.a, X.b of bytes such that if layer v is located on a stage

with data-parallel degree d and data-parallel degrees of this and later stages sum up to s,
then the memory consumption on each device is X.a · ds/de+X.b (see Section 3.5).

Piper outputs the following low-TPS solution: a collection of contiguous subgraphs/stages S1, ..., S`
such that V = S1 ∪ ...∪ S`, and for each stage i: (a) the degree di of data parallelism, (b) the degree
ti of tensor parallelism, (c) for each node/layer v ∈ Si: the index of the TMPC selected in T (v, ti).

All nodes in a stage use the same degrees of data and tensor parallelism, but different nodes (even if
all correspond to e.g. transformer layers) can use different TMPCs. For example, some but not all
layers in a stage might employ activation recomputation.

4 Algorithm

Our algorithm is based on dynamic programming on downsets, extending recent work [23].

Definition 4.1 We call a set D ⊆ V of nodes a downset if (u, v) ∈ E and u ∈ D implies v ∈ D.

As proved there, going from downset to downset we can obtain every possible contiguous subgraph:

Fact 4.2 A set S ⊆ V of nodes is contiguous (see Definition 3.1) if and only if it is the difference of
two downsets: S = D \D′ where D′ ⊆ D.

We rely on the domain insight that layer-granularity computation graphs of modern DNNs do not have
many downsets, making tractable the approach of considering all downsets and all contiguous sets
using dynamic programming. We define the following dynamic programming table: dp[D][k][s] is
the minimum TPS of a solution that partitions the downset D among k devices (recall that the TPS of
a solution is the maximum TPS over all k devices) such that the sum of data-parallel degrees of all
stages is s. A key novel point in our approach is that using the single variable s, which ranges from 0
to N , we can precisely control both memory usage (see Section 3.5) and batch size (Appendix A).

We initialize the table as follows: dp[∅][k][s] = 0 for every k and s. The answer (minimum TPS)
when using any number k of devices and sum s of data-parallel degrees will be held in dp[V ][k][s],
and the final answer is mink=1,...,K mins=1,...,N dp[V ][k][s].

We proceed to the main part: the recursion. For every possible sub-downset D′, we consider
partitioning the contiguous subgraph S = D \ D′ with data-parallel degree d and tensor-parallel
degree t, so that d · t devices are used for S and the rest for D′. For ∅ ( D ⊆ V , we have

dp[D][k][s] = min
downsetD′⊆D

min
d=1,...,s
d|N

bk/dc
min
t=1

max(dp[D′][k − d · t][s− d],TPS(D \D′, t, d, s)),

where we define TPS(S, t, d, s) as the minimum Time-Per-Sample when optimally partitioning S
with degrees d and t of data and tensor parallelism, respectively, and so that the sum of data-parallel
degrees of this and all further stages is s. We now describe how we compute this quantity.

The knapsack subproblem. How to compute TPS(S, t, d, s)? Given parallelism degrees d and
t, we need to choose one TMPC X ∈ T (v, t) for each v ∈ S. Some TMPCs may have better

2Includes the runtime of both the forward and the backward passes.
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TPS, but others may use less memory. More concretely, we want a combination that minimizes the
total TPS of the stage while staying under the memory limit M . Both the total TPS and the total
memory usage of any combination can be expressed as sums of the TPSes and the memory usages
of TMPCs of individual nodes v ∈ S (more details below). However, there are still exponentially
many

(∏
v∈S |T (v, t)|

)
possibilities, and in fact this subproblem is NP-hard, as it generalizes the 0-1

knapsack problem. At the same time, we require a very fast solution as it needs to be solved for all S,
t, d, s. We use a simple bang-per-buck heuristic:

• start by picking the lowest-TPS (fastest) TMPC for each v ∈ S,
• as long as the memory usage is too high, pick the TMPC in

⋃
v∈S T (v, t) whose ratio of

decrease in memory usage (compared to the currently picked TMPC for v) to increase in
TPS is the highest, and pick it for v (instead of the currently picked one).

If no combination of TMPCs is memory-feasible, we return +∞. This is the only non-exact
component of the algorithm; however, we find that this heuristic almost always finds the optimal
solution in practice. See Appendix C for more discussion.

TPS of a fixed configuration. Finally, how do we compute the TPS of a stage for given S, t,
d, s and a selection of an TMPC X(v) ∈ T (v, t) for every v ∈ S? We need to take compute,
communication and memory into account. Compute is the simplest: compute = 1

d

∑
v∈S X(v).p.

For communication, we have costs stemming from sending activations into S, sending activations
out of S, and costs of all-reductions from using data parallelism (all in bytes):

comm =
1

d

 ∑
(u,v)∈δ−(S)

2
(
c(u, v) +X(v).cfw(u, v)

)

+
∑

(v,w)∈δ+(S)

2
(
c(v, w) +X(v).cbw(v, w)

)+ 4 · d− 1

d ·N
·
∑
v∈S

X(v).w

where we used the notation δ−(S) and δ+(S) for the sets of incoming and outgoing edges of S.
Memory usage is given by: mem =

∑
v∈S (X(v).a · ds/de+X(v).b). The final TPS for the

selected S, t, d, s and {X(v)}v∈S is compute + comm
B if mem ≤M ; otherwise we return +∞.

Running time. Under some natural assumptions, Piper’s running time is Õ(|V |2N(|V | + K ·
d(N))), where d(N) is the number of divisors ofN . A detailed analysis can be found in Appendix D.

5 Evaluation

We now evaluate the Piper algorithm on real-world DNN models. Besides the efficiency and
scalability of Piper, we are also interested in the advantages of the configurations produced by Piper
over best possible configurations that forgo at least one of the modes of parallelism or memory-saving
optimizations, as well as over best possible equi-partitioned configurations such as those found by
PipeDream-2BW’s planner algorithm. We stress that we focus on evaluating the Piper partitioning
algorithm in this work, not any particular pipelined DNN training system. Moreover, with a fixed
batch size and pipelining scheme, minimizing TPS is equivalent to minimizing time-to-convergence.

Inputs. For our comparisons, we use a BERT-32 model, which consists of an embedding layer, 32
transformer layers and a pooling layer. This model has 5.9 billion parameters, with similar dimensions
to the GPT-3 model with 6.7B parameters [2], and does not fit on a single GPU. We provide TMPCs
for non-tensor-parallelized (t = 1) and tensor-parallelized executions of transformer layers [22]
(t ∈ {2, 4, 8}), each with and without activation recomputation. These TMPCs are obtained by
profiling models implemented in PyTorch on NVidia A100 GPUs interconnected with a 300 GB/s
bandwidth NVSwitch within a server, and 25 GB/s across servers. In our evaluation, we assume that
all K ≤ 2048 devices are connected by a flat network topology with a (full bisection) bandwidth of
B = 25 GB/s (used for all non-tensor-parallelism communication). Our TMPCs model the memory
footprint assuming the PipeDream-2BW pipelining scheme.

Baselines. We compare Piper to:
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(b) BERT-32, 8GB of memory on each of k devices, N = 512.
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(c) BERT-32, 2GB of memory on each of k devices, N = 512.
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(d) BERT-32, 1GB of memory on each of k devices, N = 512.

Figure 1: Comparison of Piper to baselines on the basis of throughput normalized to the best
configuration. Throughput is the inverse of TPS (Time-Per-Sample); higher throughput is better.
Piper always obtains the highest throughput (1.000×). We vary the numbers of devices (from 8
to 2048) and the memory per device, which impacts the space of feasible solutions. For 1GB- or
2GB-devices, baselines are often unable to find any memory-feasible configuration (0.000×). 1GB
models a scenario where TP and AR are both required to fit even a single layer on a device.

• no DP: a version of Piper that forgoes data parallelism (i.e., d = 1),

• no TP: a version of Piper that forgoes tensor parallelism (i.e., t = 1),

• no AR: a version of Piper that forgoes activation recomputation,

• equi: an algorithm that equi-partitions layers intow equal groups and uses d-data parallelism
and t-tensor parallelism, choosing the lowest-TPS among all valid (w, d, t) triples; it also
considers performance with and without activation recomputation (for the entire model),
and places the embedding and pooling layers either on separate stages or with the first and
last transformer layer respectively,

• equi-no TP: a version of equi that forgoes tensor parallelism (i.e., t = 1); we show this as a
surrogate for PipeDream-2BW’s planning algorithm.

Both no TP and no AR are more sophisticated than PipeDream’s partitioning algorithm, which
forgoes tensor parallelism, activation recomputation, and also assumes M =∞.
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Figure 2: A single run of Piper produces a table of optimal Times-Per-Sample (TPS) for every number
of devices. Here, we show the best TPS for Piper and the baselines versus the number of devices, for
two different batch size (N ) values. Lower TPS is better. Tensor parallelism is needed to use more
than N devices, as seen by the no TP baseline plateauing after k = N . equi obtains a 10-15% worse
TPS than Piper for most k.
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Figure 3: Piper’s running time as a function of the number of devices, for various DNN model sizes
and batch sizes (N ). Bars show standard deviation. Single-core implementation executed on an Intel
Xeon E5-2673 v4 CPU. Runtime depends on the number of divisors of N (over which d is iterated).

5.1 Results

Results of our evaluation in terms of the quality (TPS) of the obtained configurations are given in
Figs. 1 and 2. The running times of Piper are shown in Fig. 3. We discuss the main takeaways.

Data parallelism (DP). Data parallelism is crucial, as expected. Without it, scaling to more devices
is impossible; e.g., in Fig. 2, the TPS of no DP stops decreasing beyond k = 22 devices.

Tensor model parallelism (TP). We found that, in a vacuum, the speedup obtained by TP is much
less than that of DP due to frequent and costly synchronization. However, TP also shrinks the
parameter size per device, which helps with memory feasibility, and does not increase s (in contrast
to DP), which enables one to stay below the specified number N of microbatches in a batch. In
particular, TP is essential to use k > N devices (see the no TP baseline in e.g. Fig. 1a or Fig. 2). TP
is also required in cases when even a single layer cannot fit onto a device (Fig. 1d).

Activation recomputation (AR). Activation recomputation is required to obtain any memory-
feasible solution in certain cases. Even when it is possible to do so without AR, foregoing it can
force quite imbalanced (in terms of TPS) splits in order to fit in memory. For example, in Fig. 1c,
without AR, one is forced to use small values of s to stay within memory, which limits the number of
stages and data-parallel degrees, and hence performance (using TP as a replacement yields worse
throughput). In scenarios with enough memory relative to DNN size (Fig. 1a), AR is not useful.

9



0
0

True TPS

Pr
ed

ic
te

d
T

PS
Figure 4: Real vs. Piper-predicted Time-Per-Sample for 16 configurations of pipeline, data, and
tensor parallelism for BERT-32 with K = 64 devices. Training times were measured on a system
with 8 NVidia DGX A100 machines, each with 8 GPUs. The Pearson correlation coefficient is 0.95.

Power of Piper’s search space. Piper has the ability to return configurations with stages that are
different from each other (e.g., different numbers of layers, degrees d and t, memory optimizations).
We found that this leads to a lower optimal TPS than the baseline equi even for extremely repetitive
DNNs such as BERT (see Figs. 1 and 2). This is useful for two reasons. First, in earlier stages, the
parameter s that controls memory usage (Section 3.5) is higher (as s is a "suffix sum" of DP degrees
over stages), which means that it is optimal to have larger degrees d or t or smaller numbers of layers
in the earlier stages. In other words, in an optimal equi-partitioned configuration, if memory is a
bottleneck, then the memory limit will be attained almost tightly in the first stage, which needs to
store activations for many in-flight microbatches, but will be loose in the last stage, which only stores
activations for one microbatch. In contrast, Piper will effectively adjust all stages to ensure that
almost all available memory is used on every device. Second, Piper is also able to adjust to different
layer types; for instance, the embedding layer can use a different TP degree t than transformer layers.

Running time of Piper. Fig. 3 shows the scalability of Piper’s algorithm as a function of k and |V |,
as well as N , on larger BERT inputs created by expanding our BERT-32 profiles. We find that Piper
terminates in minutes, which is a very small percentage of the actual training times of the DNNs (days
to weeks). We also note that Piper’s algorithm is embarrassingly parallel, as for every I , computing
the table TPS(I \ I ′, ·, ·) and updating dp can be done in parallel over all sub-downsets I ′ ⊆ I . With
such an implementation, runtimes for the algorithm would scale linearly on a multi-core CPU server.

Quality of cost model. Fig. 4 shows that Piper’s cost model is very close to real performance. In
this work, we assumed a flat network topology. While this already yields precise estimates, Piper can
be extended to handle hierarchical network topologies (see Appendix E).

6 Conclusions and Future Work

In this work, we presented a two-level dynamic programming approach that determines how to
partition a provided model over a given number of accelerators, while optimally composing tensor
and pipeline model parallelism with data parallelism and memory-saving optimizations. In our
evaluation, we found that Piper finds high-throughput parallelization strategies that in many cases
improve upon planners from prior work, and that Piper’s power of finding non-trivial combinations
of parallelism modes is especially beneficial in large-scale or memory-constrained scenarios.

While we consider pipeline parallelism schedules without pipeline flushes in this paper, one way of
extending Piper to consider schemes with pipeline flushes is by adding the pipeline depth to Piper’s
dynamic programming state. However, this would worsen Piper’s time complexity. We leave such
extensions and improvements to the algorithm for future work. The main open question resulting
from this work is automatically finding good tensor-parallelism schemes for each individual layer
type (rather than the entire DNN operator graph). Piper can then determine how to best compose
these per-layer tensor-parallelism schemes to obtain a high-performance training configuration for
the entire model.
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 d s s/d  

Stage 1, device 1 3 6 2 1 1 1    4 4 4 1 1 1 7 7 7 4 4 4 10 10 10 7 7 7 

Stage 1, device 2 3 6 2   2 2 2    5 5 5 2 2 2 8 8 8 5 5 5 11 11 11 8 

Stage 1, device 3 3 6 2     3 3 3    6 6 6 3 3 3 9 9 9 6 6 6 12 12 

Stage 2, device 4 1 3 3    1  2  3 1 4 2 5 3 6 4 7 5 8 6 9 7 10 8 11 

Stage 3, device 5 1 2 2     1  2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 

Stage 4, device 6 1 1 1      1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 

 

Figure 5: Example of a pipelined schedule (in particular, PipeDream-2BW’s schedule), with non-
equal data-parallel degrees for different stages. Stage 1 has d1 = 3 and uses devices numbered 1–3;
stages 2–4 have d2 = d3 = d4 = 1 and use devices numbered 4–6 respectively. Tensor parallelism
is not used in this example. The suffix sums of data-parallel degrees (s) are shown in the figure.
The forward pass, marked in blue, is assumed to take the same time as the backward pass, marked
in green. The runtime of a single microbatch in stage 1 is assumed to be 3 times larger than the
runtime in each of the stages 2, 3, and 4 (which makes for a balanced schedule since stage 1 has
a data-parallel degree of 3). The number ds/de is the number of in-flight microbatches of every
device in steady state. Stashed activations for these microbatches must be kept between their arrival
(blue) and departure (green). For example, device 2 maintains stashed activations for microbatch sets
{2}, {2, 5}, {5}, {5, 8}, {8}, {8, 11} and {11} at different points in time.

A Batch size and memory usage considerations

Batch size considerations. Usually, a maximum safe batch size B′ (verified to not compromise
statistical accuracy and model convergence) is known; for large modern language models, this could
be on the order of 1024–2048 [20]. Our search space will consist of schedules with given batch size
B′.

A batch consists of many microbatches; the total batch size is B′ = N · b′, where b′ is the microbatch
size. The value of b′ should be chosen before Piper is run. If multiple choices of b′ are being
considered, then we envision that single-layer runtimes would be profiled for multiple settings of b′
and then Piper is run for each of them (setting N := B′/b′). The returned TPS (Time-Per-Sample)
should be more precisely understood as Time-Per-Microbatch, so it should be normalized by dividing
by b′. Then, the lowest value (and the corresponding microbatch size) would be selected.

When a pipeline is in steady state, the number of microbatches “in flight” and being processed by
some worker in the pipeline is equal to the sum s =

∑
i di of data-parallel degrees of all stages.

This is because with data parallelism, multiple devices are processing disjoint microbatches (devices
process the same microbatch, possibly disjoint shards of it, with tensor parallelism).

In the pipelining schemes that we consider [17, 18], the number of microbatches in a batch (N ) is at
least s (so that the pipeline is saturated). Furthermore, we must have the data-parallel degree of every
stage be a divisor of N , so that the microbatches can be evenly split among data-parallel replicas.

Without tensor parallelism, s is always equal to the number of devices used. Therefore, if more
than N devices are available, tensor parallelism (and Piper’s fine-grained control over the sum s of
data-parallel degrees) is required to use all devices. In particular, even if b′ = 1, tensor parallelism is
required to use more than B′ devices.

Memory usage. Consider a stage j (out of ` total stages). In steady state, the number of micro-
batches being processed by stages j, ..., ` is equal to

∑
i=j,...,` di (in other words, s from Piper’s

DP table for stage j). For each in-flight microbatch, we need to store all activations (if using
PipeDream-2BW [18] and not using activation recomputation) or just input activations (if using
PipeDream-2BW [18] and using activation recomputation) or stashed weights and activations (if
using PipeDream [17]). If stage j has data-parallel degree dj , then these activations are partitioned
equally among the devices assigned to this stage, which results in each of these devices needing to
store ds/dje such activation/weight stashes. See Fig. 5 for an example.

Besides this, each stage has other memory costs that do not depend on the number of in-flight
microbatches (such as optimizer state, temporary buffers, or two sets of weights if using PipeDream-
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(a) Contiguous split (b) Non-contiguous split

Figure 6: (a) Contiguous and (b) non-contiguous splits. Note that the brick-patterned orange nodes
in (a) form a contiguous subgraph despite not being connected, and checked blue nodes in (b) form a
non-contiguous subgraph despite being connected. Figure borrowed from Tarnawski et al. [23].

2BW [18]). Thus, for all these modes of execution, the memory usage can be modeled as∑
v∈S

av · ds/dje+
∑
v∈S

bv ,

where av and bv are some coefficients that are functions of the node/layer v and of the TMPC selected
for this node. (For instance, if some tensor parallelism scheme partitions the activations among
devices, av will decrease; if it [also] partitions the weights, bv will [also] decrease, and so on.)

B Data flow in tensor-parallelized stages

In this section, we discuss our model for the edge-related communication costs in the presence of
tensor parallelism. Consider a subgraph/stage that is being tensor-parallelized. For each layer v ∈ S,
there are certainly communication costs between the t devices that are incurred in the course of the
actual execution of v; these costs are modeled in the Time-Per-Sample quantity X(v).p (whose value
is obtained via profiling) and this section is not concerned with them. Rather, we are interested in
modeling the transfers of tensors that correspond to edges. For simplicity let us concentrate on the
forward pass; the backward pass is symmetric.

Let subgraph/stage S ⊆ V be tensor-parallelized on t > 1 devices; for each v ∈ S, let X(v) be the
TMPC selected for that node/layer.

Layers finish with full output activations on each device. Let v ∈ S. We will assume (and
require from the schemes that the TMPCs describe) that, once v is done executing, each of the t
devices will hold the same, full, output activations. This may necessitate adding a final synchronization
step between the t devices to the tensor parallelization configuration if, for instance, each device were
to end up computing a 1/t part of the final output activation, partitioned along some dimension; now
these need to be exchanged so that every device holds the entire output activation.

We believe that this assumption is natural, as most tensor parallelization strategies in practice already
have this property; in particular, this is true for the Megatron-LM strategy [22] that we use in our
evaluations. Furthermore, the assumption allows us to guarantee that our cost model is simple and
tractable. Indeed, an alternative might be to allow strategies that leave 1/t of the output tensor on each
device, which would give benefits in communication if the subsequent layer is also tensor-parallelized
among t devices and the first operation in that layer is partitioned in such a way that it could take
1/t of the input activation on each device. However, even then, we would not know whether the
last operation in the previous layer and the first operation in the next one would have inputs and
outputs partitioned along the same dimension. In order to know this, we would need to maintain
additional state (e.g., the shape of the input and output tensors of each Tensor Model Parallelism
Configuration of each layer), and only select compatible configurations of TMPCs in a stage, which
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would be computationally costly and would require replacing the efficient heuristic for the knapsack
subproblem with a more involved procedure.3

Data flow over edges. Now, consider an edge incoming to v from some other node u. Which
devices should send outputs to the t devices that hold v? There are optimization/scheduling-type
decisions to be made here. If, for instance, u is also parallelized on some number k ≥ t devices,
then it would make sense to send activations in a matching-like manner (e.g. if k = t = 3 and
u is processed on devices 1–3 while v is processed on devices 4–6, then one could communicate
activations like 1→ 4, 2→ 5, 3→ 6). We can certainly do this in the runtime; however, to make the
problem structure tractable for dynamic programming, we proceed somewhat differently in the cost
model. There are two cases depending on whether u is also in the same subgraph S as v, or not:

• Case u 6∈ S: We cannot afford to know (keep in the dynamic programming state) informa-
tion about how many devices the subgraph where u lies is partitioned on. Thus we must
assume the worst case, which is that only one device holds the outputs of u. Now, we could
have this single device send the outputs to each of the t devices of v, but this would be
difficult to account for when computing the cost of u’s subgraph, as we cannot [afford to]
know t at that time. (Of course, if this is the optimal mode of communication, then we can
use it in the runtime; this gain will just not be reflected in the cost model.) What we do
instead is:

– If each of the t devices needs the entire input activation, then we will have that single
u-device send the output to the first of the t devices, and then let them distribute those
activations among themselves, so that they begin the actual processing each having the
entire input activation. The TMPC should account for this synchronization by means
of a communication cost cfw(u, v) (in bytes) for each incoming edge that each of the t
devices will pay.

– An exception: if each device only needs a 1/t fraction of that activation (e.g., because
the first operation is already parallelized along an input-activation-splitting dimension),
then the u-device sends 1/t of that activation to each device; in total, it will have sent
one activation, so our prior accounting for the u-device’s communication cost (one
output tensor sent) was correct. In this case, the TMPC can have cfw(u, v) = 0 (when
proposing a tensor parallelization where this input activation is only needed in shards).

– For the special case of t = 1 (non-tensor-parallelized execution), we have cfw(u, v) = 0
as there are no communication costs in this case.

• Case u ∈ S: In this case, u is tensor-partitioned among the same t devices as v. Recall
that we assumed above that after u is done executing, each of these devices holds the entire
output activation. Thus, in this case, nothing needs to be sent. (The TMPC will contain
some cfw(u, v) value, as it does not "know" whether u ∈ S or not, but the algorithm will not
use this value.)

For the backward pass, we proceed in the same way, but we call the relevant quantity cbw(v, w), and
it pertains to the outgoing edges of v. Note that in the backward pass, the communication on this
edge goes in the reverse direction w → v. That is, cbw(v, w) is the additional communication cost
that needs to be paid by v after having received the backward tensor from w on one device, in order
to have this tensor on each device.

C Optimality gap of the knapsack heuristic

Let us remark that the knapsack heuristic is the only non-exact component of Piper. That is, if the
heuristic did in fact yield always optimal solutions, then Piper would be an exact algorithm (that
is, one finding optimal solutions) for the problem of finding the lowest-TPS global configuration
in Piper’s search space, subject to our cost model. Note that this is a sufficient condition, but far
from necessary; for example, it would be enough that the knapsack heuristic be exact on the O(|V |)
instances (S, t, d, s) that are part of some optimal global solution. Then, since the heuristic cannot

3Of course, if it turns out to be the case that two consecutive layers can be parallelized in such an advantageous
way, then the ML compiler can still make a local optimization to perform communication more efficiently in the
runtime; we simply do not model such possible gains in our cost model.
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underestimate the TPS of any (other) configuration, Piper would find that solution (or some other
optimal solution).

Moreover, we investigated whether the knapsack heuristic does in fact return suboptimal solutions in a
practical workload. To this end, we extracted a random subset of around 30000 knapsack subproblem
instances that arose when running Piper on our BERT-32 workload from Section 5 (8 GB RAM per
GPU, K = 512 devices, batch size N = 1920). We then solved them to optimality using the Gurobi
8.1 [9] Integer Programming solver. We have determined that the heuristic indeed found the optimal
solution in all instances.4

Finally, with minor modifications, one could also prove theoretical approximation guarantees for the
heuristic (similar to Csirik et al. [5], for example).

D Running time analysis

Let us denote by P the number of t-values for which there are TMPCs in the input; that is, P :=
|{t = 1, ...,K : (∃v ∈ V ) T (v, t) 6= ∅}|. Next, let us denote by T the maximum number of TMPCs
for one (v, t) pair: T := maxv,t |T (v, t)|.
We can implement Piper as follows. An outer loop iterates over downsets D and then over sub-
downsets D′: this gives O(D2) iterations, where D is the number of downsets in G. Fix D and D′
and define S := D \D′.
We will first compute all TPS(S, t, d, s) values (for all t, d, s), and then use these values to update
the dp table. We first focus on the former.

We start by precomputing, for all v ∈ S, t and TMPC X ∈ T (v, t), the contribution of X (if
selected) to TPS and to memory usage, the latter in the form of quantities a and b to be used in
the memory usage formula (see Section 3.5). We take all communication (except all-reductions for
weight gradients when using data parallelism) into account here (in particular, the communication
over the boundary edges of S). Note that we can perform such a precomputation as both TPS and
memory usage are additive over nodes v ∈ S. Note also that this precomputation is independent of
parameters s and d. For fixed S, this step takes O(P · T · (|S|+ |E|)) time, as we look at every edge
in E at most twice (once for each endpoint that it has in S).

Then, we iterate over all degrees t and d of tensor and data parallelism, respectively; as we are using
t · d ≤ K devices here, d ranges from 1 to bK/tc. For each (t, d), we need to solve one knapsack
subproblem instance per s (to compute TPS(S, t, d, s); recall that s ranges from 1 to N ). Here we
can take advantage of the fact that memory usage only depends on s through ds/de, which means
that it does not change within groups s ∈ {1, ..., d}, s ∈ {d+ 1, ..., 2d}, s ∈ {2d+ 1, ..., 3d}, and
so on. Therefore there are only dN/de distinct knapsack subproblem instances that we need to solve.
Finally, the knapsack heuristic can be implemented to run in timeO(|S|T 2 log |S|). The total running
time of this step (for fixed S) is thus

P∑
t=1

bK/tc∑
d=1
d|N

dN/de · |S|T 2 log |S| ≤ P · |S|T 2 log |S| ·
∑
f |N

f ,

where we substituted f = N/d. Thus we expect that Piper’s running time will be smaller for "less
composite" numbers N such as powers of two; this can indeed be seen in Fig. 3. Asymptotically, we
can bound

∑
f |N f = O(N log logN) [10, Section 22.9]. Thus the running time of this step can be

written as O(P |S|T 2N log |S| log logN).

Finally we consider updating the dp table. We loop t (over some set of size at most P ) and d over
divisors of N from 1 to K/t (as we must have t · d ≤ K). There are at most P · d(N) such pairs
(t, d), where d(N) is the number of divisors of N . We also need to iterate over k = t · d, ...,K and
s = d, ..., N (as t · d ≤ k and d ≤ s), which gives O(KN) pairs (k, s). Then we perform the update
of dp[D][k][s] with max(dp[D′][k − t · d][s− d],TPS(D \D′, t, d, s)), which takes constant time.
Overall this step takes time O(PKNd(N)).

4We do note that in our evaluation, we always have |T (v, t)| ≤ 2 for all (v, t), and most layers v are very
similar (transformer layers). This might be making the knapsack subproblem easier. At the same time, we expect
these properties to hold for many real-world workloads.
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Taken together, we get a time complexity of

O
(
D2 · P ·

(
T · (|V |+ |E|) + |V |T 2N log |V | log logN +KNd(N)

))
.

Simplification. In practice, we expect D = O(|V |), |E| = O(|V |), and T, P = O(1). We also use
the Õ-notation to suppress log factors. We then finally get a runtime of

Õ(|V |2N(|V |+K · d(N))) .

E Hierarchical network topologies

We have thus far assumed a network model where bandwidth constraints are placed on the incom-
ing/outgoing communication of each device – that is, a flat network topology (one can think that
these devices are all connected with an infinite-bandwidth switch). However, it is possible to extend
Piper to a hierarchical model where we are given some KL devices ("superdevices") of level L, each
of which consists of KL−1 devices of level L− 1, and so on. The devices at each level ` = 1, ..., L
(that are part of the same level-(` + 1) device, if ` < L) are interconnected with a network with
bandwidth B`. As an example, the infrastructure used for Fig. 4 was 8 NVidia DGX-A100 machines,
interconnected (between machines) with a 25 GB/s Infiniband, and each containing 8 A100 GPUs,
connected (inside the machine) with a 300 GB/s NVSwitch. The GPUs are level-1 devices, and DGX
machines are level-2 devices. This corresponds to having L = 2, K1 = K2 = 8, B1 = 300 GB/s
and B2 = 25 GB/s.

We refer to the dynamic programming algorithm from the main body of the paper as single-level
Piper.

At a high level, the main technique needed to extend the dynamic program to multiple levels involves
computing the optimal TPS for every number of devices of some level, not only for every downset,
but for every contiguous set of nodes (that is, for every difference of two downsets).

The bottleneck of the system in such a hierarchical setting is either a level-1 device (whose load
consists of compute and communication) or a higher-level device (whose load consists solely of
communication).

Basic version. Let us first ignore tensor parallelism, memory usage, and batch size. Without these,
we are essentially in the setting of PipeDream’s partitioning algorithm [17], albeit with an arbitrary
DAG rather than a path-graph of layers. We compute values

dp`[D,D′][k] = best TPS (max-load) achievable by placing D \D′ on k devices of level `.

The final result will then be maxk=1,...,K dp
L[V, ∅][k].

There are two kinds of communication to account for:

• Communication over edges: note that an edge that crosses multiple levels needs to be
accounted for at each level. One might worry that in the dynamic program, when considering
a level `, a subgraph D \D′ and an edge coming into it "from afar", we do not know (from
the DP state) whether the other endpoint of that edge is placed on the same level-` (or
level-(` + 1), level-(` + 2), etc.) device as D \D′. However, this is in fact not an issue:
with this network model, we only need to account for the boundaries of the level-` devices
that we are currently forming, and we know that in this way, this edge will be accounted for
at the boundary of each level that it actually crosses.

• All-reduce communication between data-parallel replicas: we can form stages that are
replicated across multiple levels (e.g., level 1 and then again on level 2). We assume that
in this case, the all-reduce implementation (say, a distributed parameter server approach)
is cognizant of the hierarchical structure: for instance, the weights will be synchronized
among layer-1 devices within the same level-2 device, and then among layer-2 devices (and
so on, if there are more levels). Thus, here as well, at each level we are able to account for
the data-parallel communication happening over that level’s boundary. We also do not need
to know how many devices are on the lower levels.
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With this, we can write the DP recursion, in which we choose the boundary D◦ of the last stage5 and
its data-parallel degree d:

dp`[D,D′][k] = min
D◦: downset
D′⊆D◦(D

min
d=1,...,k
d|N

max
(
dp`[D◦, D′][k − d],

1

d

4 ·
∑

v∈D\D◦
wv · d−1d + 2 ·

∑
(u,v)∈δ(D\D◦)

c(u, v)

B`

 ,
1

d
· dp`−1[D,D◦][K`−1]

)
.

Here:

• wv is the size of weights associated with node v (in single-level Piper, this information is
kept in TMPCs, but we are ignoring tensor parallelism so far).

• δ(S) is the set of all edges crossing S.

• For D◦ = D′, we have dp`[D◦, D′][k] = 0 (for any k, d) as we are partitioning an empty
set D◦ \D′ = ∅ of nodes.

• The recursion arises as follows. We are using d level-` devices, in a data-parallel fashion,
for the node set D \D◦, and k − d level-` devices (recursively) for the remaining node set
D◦ \D′. Then, the bottleneck (device attaining the maximum load) could be either

– one of the k − d level-` devices or one of the lower-level devices inside them (this is
the first dp` term),

– one of the d level-` devices; recall from the above discussion that for these, we only
look at communication, which is of two kinds: the first term corresponds to data parallel
resync costs and the second term corresponds to communication over edges (here we
account for the cost of bringing these activations one level down),

– one of the lower-level devices inside the d level-` devices (this is the dp`−1 term); we
recursively partition D \D◦ on all M`−1 many level-(`−1) devices inside each level-`
device, and we account for the data-parallelism speedup with the 1

d term.

• If ` = 1, then instead of the last dp`−1 term, we should account for compute costs, as in
single-level Piper. We take the compute costs as

∑
v∈D\D◦ pv, where pv is the latency of

node v (in single-level Piper, this information is kept in TMPCs), and we use the sum of this
with the communication-related (second) term.

• One inaccuracy here is that we enforce d | N on each level, but this does not necessarily
guarantee that the final data-parallel degree for some level-` stage (which is product of
data-parallel degrees over all levels) will be divisible by N . If this is a concern, then one
would need to additionally parametrize dp` by the number of microbatches in a batch (N )
and make recursive calls with this quantity being divided by d (i.e., instead of dp` depending
on dp`−1 in the DP recursion, we would have dp`,N depending on dp`−1,N/d).

Running time. If we first precompute all sums of w, c and p values for all contiguous
sets, which takes O(D2 · (|V | + |E|)) time, then filling the dp table on level ` requires com-
puting O(D2K`) values, each taking time O(Dmin(K`, d(N))), for a total time complex-
ity of O(D3

∑L
`=1K`min(K`, d(N))). If D, |E| = O(|V |), then we get a total time of

O(|V |3Kmin(K, d(N))).

An improvement. Note that, for the highest level, we in fact only need to compute dpL[D,D′] for
D′ = ∅ (as we are using the same D′ for the recursive term dpL[D◦, D′][k − d]). This can be very
helpful if e.g. L = 2 and K2 � K1, as the time complexity will have terms D2K2d(N) +D3K2

1
(rather than D3K2d(N)).6

5We are forming a level-` "superstage", which might be split further at lower levels.
6For this back-of-the-envelope calculation we assumed K2 > d(N) > K1.
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Crude memory accounting. We note that the above "basic version" can be augmented with an
approximate memory accounting: namely, at level 1, we only consider forming a stage if its memory
usage is at most M , and memory usage is counted as in Section 3.5, but we use K as an upper bound
for s. That is, for a subgraph S and data-parallel degree d we want to have(∑

v∈S
av

)
· dK/de+

∑
v∈S

bv ≤M ,

where a, b are the memory usage quantities that in single-level Piper are stored in TMPCs. This
approach is somewhat akin to ignoring the fact that later stages have lower memory usage since they
need to store fewer activations.

Precise memory accounting and batch size considerations. Now we would like to extend the
above "basic version". Recall that in single-level Piper, these are controlled by a parameter s, which
is a suffix sum of data-parallel degrees over stages. Let us remark that now, for a "superstage" that is
replicated over more than one level, we should take the product of its data-parallel degrees.

We start with a rather heavy-handed extension of the above dynamic program to take the parameter s
into account. Consider, as previously, forming a new stage for the subgraph D \D◦. To correctly
estimate the memory usage of this (super)stage, we need to know the sum of data-parallel degrees
from this stage to the last stage (not just the last stage of the split of D \D◦, but the last stage of the
split of D). Also, the recursive call for D◦ \D′ will need to know its similar sum of data-parallel
degrees, but we would not know this unless we also control the sum of data-parallel degrees in the
split of D \D◦ itself. This means that unfortunately we need to use another parameter, which we
will denote by x.

Namely, we can compute

dp`[D,D′][k][s, x] = best TPS (max-load) achievable by placing D \D′ on k devices of level `
assuming that the sum of data-parallel degrees in D’s split is s

and that the sum of data-parallel degrees in (D \D′)’s split is x.

Now, in the DP recursion, we will also select a sum x◦ of data-parallel degrees for the new stage (for
D \D◦). Note that x◦ must be divisible by d. Then, the sum of degrees for (D◦ \D′)’s split will
become x− x◦, and the sum of degrees for D◦’s split will become s− x◦. The lower-level split (of
D \D◦) needs to have sum of degrees x◦/d. Moreover, since this is replicated d-wise, the effect of
the s microbatches waiting in the pipeline on memory usage can be obtained by dividing by d (taking
the ceiling; similarly as in Appendix A). Let us write the full formula:

dp`[D,D′][k][s, x] = min
D◦: downset
D′⊆D◦(D

min
d=1,...,k
d|N

min
x◦=d,2d,...

x◦≤min(x,d·K`−1)

max
(
dp`[D◦, D′][k − d][s− x◦, x− x◦],

1

d

4 ·
∑

v∈D\D◦
wv · d−1d + 2 ·

∑
(u,v)∈δ(D\D◦)

c(u, v)

B`

 ,
1

d
· dp`−1[D,D◦][K`−1][ds/de, x◦/d]

)
.

As previously, we adjust the recursive relations for ` = 1 appropriately (using the parameter s to
account for memory usage, as in single-level Piper, and ensuring that the parameter x is equal to the
sum of data-parallel degrees of the split).

Improvements. The proliferation of parameters leads to a running time that is still polynomial (as
long as D = poly(|V |)), but of a very high degree, and most likely no longer practical. However, we
can again optimize for the typical scenario we are targeting, where L = 2 and K1 is small. To that
end, notice that for ` = L:

• we still only need to consider D′ = ∅,

19



• and then, the parameter x is unnecessary, as in this case, D \D′ = D and so we must have
x = s.

If L = 2, then only level ` = 1 remains, and if K1 is small (e.g., K1 = 8), the above dynamic
program should be feasible to run.

We note that another possible, albeit lossy, optimization is to upper-bound s by s ≤ N whenever
counting memory usage, similar to the approach proposed above for "crude memory accounting";
then the parameter s can be removed, but we still control the sum of data-parallel degrees with the
parameter x ≤ N .7

Tensor parallelism. Finally, we extend the above with tensor parallelism. Following recent
work [18, 19], we focus on tensor parallelization within a single level-2 device (e.g., an NVidia DGX
machine), as very fast communication is necessary for tensor parallelization techniques to be efficient.
This means that we only need to consider tensor parallelism for ` = 1, and thus level 1 essentially
becomes single-level Piper, but

• extended by computing the best configuration for every contiguous set D \D′ (rather than
every downset D), as above,

• extended by including the parameter x, as above,
• but executed for a smaller number K1 � K of devices.

F Further evaluation results

In Table 1, we present a comparison of Piper to the equi baseline for two other DNN models. We do
not use tensor parallelism for these experiments. These results demonstrate that equi-partitioning
often fails to recover high-throughput partitionings when compared to more involved (e.g., dynamic
programming based) partitioning algorithms such as Piper or other recent work [17, 23].

7Of course, there is no reason to control the sum of data-parallel degrees unless we are using tensor parallelism,
since absent tensor parallelism, this sum is always equal to the total number of devices K =

∏L
`=1 K`.
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Number of
devices (K)

Memory per
device (GB)

Piper (TPS) equi (TPS) equi normalized
to Piper

(throughput)

Piper’s runtime

GNMT
2 2.5 263.354 325.026 0.810× 290.2s
2 3.5 260.227 260.227 1.000× 288.9s
4 1.2 137.131 OOM 0.000× 387.2s
4 2.5 131.677 162.513 0.810× 408.5s
8 1.2 68.566 137.518 0.499× 572.8s
8 2.4 65.839 81.257 0.810× 572.3s

16 1.2 34.263 68.759 0.498× 792.7s
32 0.8 17.504 71.188 0.246× 1081.2s

Resnet50
8 4.0 73.493 OOM 0.000× 4.7s
8 8.0 63.434 164.159 0.386× 4.9s
8 16.0 58.558 108.885 0.538× 5.2s

16 2.0 76.521 OOM 0.000× 7.4s
16 4.0 35.333 OOM 0.000× 7.3s
16 8.0 31.634 82.080 0.385× 8.0s
16 16.0 29.279 54.443 0.538× 8.9s
32 1.5 50.977 OOM 0.000× 9.6s
32 2.0 24.626 OOM 0.000× 10.0s
32 4.0 17.624 OOM 0.000× 10.3s
32 8.0 15.758 41.040 0.384× 10.8s
32 16.0 14.639 27.221 0.538× 12.5s
64 1.5 16.992 OOM 0.000× 13.0s
64 2.0 11.334 OOM 0.000× 13.0s
64 4.0 8.667 OOM 0.000× 13.5s
64 8.0 7.879 20.520 0.384× 15.2s
64 16.0 7.320 13.611 0.538× 19.1s
128 1.0 19.856 OOM 0.000× 17.3s
128 1.5 7.025 OOM 0.000× 17.4s
128 2.0 5.406 OOM 0.000× 18.2s
128 4.0 4.306 OOM 0.000× 20.0s
128 8.0 3.895 10.260 0.380× 21.7s
128 16.0 3.660 6.805 0.538× 27.6s

Table 1: Results of comparing Piper to the baseline equi on two further DNN models, GNMT and
Resnet50, without tensor parallelism. We use profiles (on an nVidia GTX 1080Ti GPU) from prior
work [23]. For both, we use multiple settings for the number of devices and the memory limit. For
GNMT, the throughput of equi was on average 67% of that of Piper, and in one scenario equi could
not find any memory-feasible solution while Piper was able to. For Resnet50, the throughput of equi
was on average 46% of that of Piper, and we found more scenarios where equi could not find any
feasible solution.
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