
ProjecToR: Agile Reconfigurable Data Center Interconnect

Abstract

This supplementary document describes the scheduling algorithm used in the ProjecToR
data-center interconnect system. The algorithm assigns bundles to laser-photodetector edges as
they arrive online with the goal of minimizing the bundle/flow completion times over all bundles
in the system. It does this while taking advantage of the reconfigurability of the network and
establishing edges between laser and photodetector pairs as necessary.

We compare the performance of the proposed stable-matching algorithm to the optimal
performance of a more powerful hindsight optimal algorithm that is aware of all the bundles
arriving in the system and can operate offline. We can show that for any ε, if the proposed
stable-matching algorithm is allowed to run (2 + ε) faster than the hindsight optimal algorithm,
then it can achieve a total weighted bundle latency that is

(
2
ε + 1

)
-competitive with the hindsight

optimal algorithm. The proof uses a dual-fitting technique, where the objective function is
bounded by finding an appropriate feasible solution for the dual problem, to give the bound.

We also give an integer linear programming formulation for the problem of maximizing
instantaneous throughput.

1 Problem formulation and main result

Problem definition: We are given a graph G with 4 sets of vertices: sources S, destinations D,
lasers (transmitters) T , and photodetectors (receivers) R. Each laser in T is attached to a particular
source in S, and each photodetector in R is attached to a particular destination in D. The edges in
the graph E(G) are all directed and go from S to T to R to D.

Bundles j from set J arrive online. Say each bundle j arrives at time rj , and is specified by a
source destination pair (sj , dj). We say that a bundle j can be transmitted on edge e := (u, v) with
u ∈ T, v ∈ R,, if there are edges (sj , u) and (v, dj) in E(G). We denote this by j ∼ e. A bundle also
has a weight wj . This weight signifies the relative importance of the bundles. Finally, assume the
length of each bundle is given by pj (an integer).

Time is discrete, and is indexed by t = 1, 2, We assume a synchronous model where clocks
on all the vertices tick at the same time. At any time t, each active edge e can be used to transmit
one unit of bundle j ∼ e released earlier (i.e., rj ≤ t). As a physical constraint, each transmitter or
receiver can only be adjacent to only one active edge at a time. A scheduling algorithm, for each
time t, picks the set of active edges and the bundles that are transmitted on each active edge.

The completion time, cj , of a bundle is the time at which all pj units of the bundle j have been
transmitted. The latency (or flow time) of a bundle is the time it stays in the system, i.e., time
cj − rj . The objective of the scheduling algorithm is to minimize the weighted sum of latencies over
all bundles, i.e. to minimize ∑

j

wj(cj − rj).

1

Another objective is to minimize the `2 objective:∑
j

wj(cj − rj)2.

Competitive analysis compares the cost of an algorithm to that of a hindsight optimal solution.
The hindsight optimal solution is aware of all future bundle arrivals and schedules them optimally.
An algorithm is α-competitive if its cost is at most an α multiplicative factor away from the hindsight
optimal cost.

For some problems such as the one we consider, we also need speed augmentation: algorithm
runs at a speed that is a constant β multiplicative factor faster than the hindsight optimal solution.

We assume, for simplicity, that each bundle j is of unit length and has weight wj . A bundle
of length pj and weight wj can be treated as pj unit length bundles each with weight

wj

pj
, but

this changes the objective and gives what is known as the fractional flow time. Guarantees about
fractional flow time can be converted to guarantees about flow time using standard techniques.

Stable allocation: An allocation is a map A : J → E(G) ∪ {⊥} such that ∀j ∈ J,A(j) 6= ⊥ ⇒
j ∼ A(j), and Im(A) forms a matching; it specifies a feasible allocation of bundles to active edges.
Bundles with image ⊥ are not allocated to any edge.

Given priorities, πj ∀j ∈ J , an allocation A is a stable allocation iff

∀j : A(j) = ⊥, ∀e ∼ j,∃j′ : A(j′) and e share a common vertex, and πj′ ≥ πj .

A stable allocation is one where a bundle is not blocked by lower priority bundles. For every feasible
edge of an unallocated bundle, either of the end points of the edge must be transmitting a higher
priority bundle. Stable allocations always exist, but need not be unique.

The stable allocation scheduling algorithm is as follows: at any given time, among all bundles
that have arrived but not completely transmitted, transmit a set of bundles corresponding to any
stable allocation.

Theorem 1. For any ε ∈ (0, 1), for instances with with unit length bundles, the stable allocation
scheduling algorithm is (2 + ε)-speed 2

ε + 1-competitive for the objective of minimizing

• total weighted latency of the bundles, by using the priority πj = wj.

• the `2 objective, by using the priority πj = wj(t− rj).

The result also extends to the average latency of bundles for any finite run of the algorithm.

2 Analysis

We prove the theorem for the weighted sum objective; the proof for the `2 objective is similar. We
use the dual-fitting technique, a standard method used in approximation and online algorithms
literature, to analyze our algorithm. The dual fitting analysis technique consists of two main steps:

1. Formulate the underlying optimization problem as an integer linear program, and then relax
the constraints to obtain a linear program. This is called the LP relaxation of the problem.
An optimal solution to the linear program gives a lower bound on the cost of optimal solution
of the original optimization problem.

2

2. Take the dual of the linear program and appropriately set the dual variables to bound the
cost of the algorithm.

We start by writing the LP relaxation. The variables xjet in (1) denote the fraction of bundle j
that is scheduled for transmission on edge e at time t. The first set of constraints enforce that every
bundle is scheduled at some time instant t. The second and third set of constraints ensure that at
each time instant t, no transmitter or receiver has more than one outgoing edge.

We incorporate speed augmentation by restricting the hindsight optimal algorithm: it can only
transmit 1

2+ε fraction of a bundle in one time step (for some ε > 0). This is equivalent to providing
our algorithm with a speed up of 2 + ε. The objective function is a valid lower bound on the optimal
value, since a bundle j that is scheduled at time t has a latency precisely t− rj + 1. Our relaxation
is based on similar LP relaxations used in [1].

Minimize
∑
j

∑
e∈G

wj · xjet · (t− rj + 1) (1)

s.t.
∑
t≥rj

xjet ≥ 1 ∀j

∑
j:e−>v

xjet ≤
1

2 + ε
∀v ∈ T, ∀t

∑
j:e−>u

xjet ≤
1

2 + ε
∀v ∈ R,∀t

xjet ≥ 0 ∀e, j, t

Next, we write the dual program. The dual program has variables αj corresponding to the first
set of primal constraints. Variables βut, βvt correspond to the second and third set of constraints.

Maximize
∑
j

αj −
1

2 + ε
·

(∑
u∈T

βut +
∑
v∈R

βvt

)
(2)

s.t αj −
∑

u:e−>u
βut −

∑
v:e−>v

βvt ≤ wj · (t− rj + 1) ∀e, t, j− > e (3)

αj ≥ 0 ∀j
βut, βvt ≥ 0 ∀u ∈ T, ∀v ∈ R

The second step of the proof is to set the dual variables that can give a bound on the competitive
ratio of our algorithm. Consider the schedule produced by our algorithm. Let J(t) denote the set of
bundles that are unfinished at time t. For a bundle j, define J<j(e, rj) as the set of bundles that
arrive earlier than j and are scheduled to be transmitted after j using either the transmitter or the
receiver belonging to edge e. Similarly, define J>j(e, rj) as the set of bundles that are released earlier
than bundle j and are scheduled before j using either the transmitter or the receiver belonging to
edge e.

3

Let tj denote the time at which bundle j is transmitted and let e(j) denote the edge on which it
is transmitted.

Setting of Dual Variables: We set the dual variables αj , βe as follows.

• We set αj = wj · (|J>j(e(j), rj)| + 1) +
∑

j′∈J<j(e(j),rj)
wj′ . Note that bundles in the set

J>j(e(j), rj) delay bundle j from the definition of our algorithm. (A bundle j can also get
delayed by another bundle j′ that arrives after it but we charge that increase to bundle j′).
The second term,

∑
j′∈J<j(e(j),rj)

wj′ accounts for increase in the latency that bundle j causes
for the other bundles. In particular, we only account for the increase to bundles that are
released earlier than bundle j and use the same edge e(j). From the definition, it is clear
that αj is does not change over time, and depends only the set of bundles that arrived before
bundle j. This will be important to verify constraints.

• We set βut =
∑

j:j−>u,j∈J(t)wj and βvt =
∑

j:j−>v,j∈J(t)wj . In words, we set βut, βvt to be
the total weight of bundles that are unfinished at time t that are scheduled by our algorithm
to use vertex u or vertex v.

Bounding the Dual objective: We show that our setting of dual variables capture the cost
incurred by our algorithm.

Lemma 2.
∑

j αj = CostAlgo.

Proof. Define J>j(e,> rj) as the set of bundles that arrive after j and are scheduled ahead of j
using either the transmitter or the receiver belonging to edge e. From the definition of αj variables
and rearranging terms we get,∑

j

αj =
∑
j

(wj · (|J>j(e(j), rj)|+ 1) +
∑

j′∈J<j(e(j),rj)

wj′)

=
∑
j

wj · (|J>j(e(j), rj)|+ 1) +
∑
j

∑
j′∈J<j(e(j),rj)

wj′

=
∑
j

wj · (|J>j(e(j), rj)|+ 1 + |J>j(e,> rj |)

Now, observe that (|J>j(e(j), rj)|+1+|J>j(e,> rj)|) is the amount of time bundle j spends before
being transmitted. Therefore,

∑
j αj is precisely the total latency of bundles in our algorithm.

Next, we prove that β variables also account for the cost algorithm.

Lemma 3.
∑

u,t βut =
∑

v,t βvt = CostAlgo.

Proof. Fix a bundle j and consider the interval [rj , tj]; recall that rj and tj denote the arrival time
and transmission time of bundle j. From the definition of βut and βvt variables, j contributes wj to
each time instant t ∈ [rj , tj]. Therefore, the lemma follows.

The next theorem follows immediately from the two lemmas above.

Theorem 4. The cost of dual (2) is at least ε
2+εCostAlgo.

4

Proof. Consider the objective function of dual program (2). From Lemmas 2, 3 we get,

∑
j

αj −
1

2 + ε
·

(∑
u∈T

βut +
∑
v∈R

βvt

)
= CostAlgo− 2 CostAlgo

2 + ε
=

ε

2 + ε
CostAlgo.

Verifying Constraints: To complete the proof of Theorem 1, it remains to show that our choice
of dual variables satisfies the dual constraints. Fix a bundle j between (s, d). There is a dual
constraint 3 for every edge e on which bundle j can be transmitted and for each time instant t. Fix
an edge e and time instant t′. Rearranging 3, we need to show that

αj ≤
∑

u:e−>u
βut +

∑
v:e−>v

βvt + wj · (t′ − rj + 1).

Since our setting of αj depends only on the set of bundles that arrived earlier than j, we assume
that no more bundles enter the system. This is without loss generality since the arrival of more
bundles can only increase the value of the β variables compared to the case when no more bundles
arrive. Consider,

αj = wj · (|J>j(e(j), rj)|+ 1) +
∑

j′∈J<j(e(j),rj)

wj′

≤
∑

j′′∈J>j(e(j),rj

wj′′ +
∑

j′∈J<j(e(j),rj)

wj′ + wj · (t′ − rj) (4)

The last inequality follows from two facts:

1. Every bundle j′′ ∈ J>j(e(j), rj) has weight higher than weight of bundle j;

2. At each time instant t ∈ [rj , t
′] the bundle j is blocked at the transmitters or at the receivers

by a bundle of higher weight.

Observe, however, that all the bundles in the sets J>j(e(j), rj) and J<j(e(j), rj) are alive at time t′

and contribute their weight β variables. Therefore,∑
j′′∈J>j(e(j),rj

wj′′ +
∑

j′∈J<j(e(j),rj)

wj′ + wj · (t′ − rj) ≤
∑

u:e−>u
βut +

∑
v:e−>v

βvt + wj · (t′ − rj) (5)

From equations (4,5) we conclude that all the dual constraints are satisfied. This completes the
proof.

3 Maximizing Instantaneous Throughput

In this section, we give an integer linear program for the problem of maximizing instantaneous
throughput. The problem is an instantaneous version of the one defined in Section 1: we are given
the two-tier network G and a set of bundles J , and we need to find an allocation A of jobs to a set

5

of active edges to maximize the weighted throughput, which is the sum of the weights of the jobs
that are allocated:

w(A) :=
∑

j:A(j)6=⊥

wj .

The integer linear program (ILP) has a variable xje for each bundle j and each edge e ∼ j.
Setting xje = 1 indicates that e is active and A(j) = e; conversely, xje is set to 0 otherwise.

Maximize
∑
j,e

wj · xje (6)

∑
e:j∼e

xje ≤ pj ∀j

∑
j,e:j∼e=(u,v)∈E

xje ≤ 1 ∀u ∈ T

∑
j,e:j∼e=(u,v)∈E

xje ≤ 1 ∀v ∈ R

xje ≥ 0 ∀e, j.

We give a brief explanation of the ILP. Objective function is straight word and maximizes the total
weight of bundles allocated. The first set of constraints make sure for every j, the total flow sent
over all edges is at most pj . The second and third constraints enforce the matching constraints
on transmitters and receivers. Without the first set of constraints, the ILP is same as max-weight
matching ILP on bipartite graphs, which is known to be integral, and the problem polynomial time
solvable. The question of whether this problem is in polynomial time (P) or NP-Hard remains open.

References

[1] S Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time
explained by dual fitting. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 1228–1241. SIAM, 2012. 2

6

	Problem formulation and main result
	Analysis
	Maximizing Instantaneous Throughput

