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ABSTRACT
Even within one popular sub-category of ”NoSQL” so-
lutions – key-value (KV) storage systems – no one ex-
isting system meets the needs of all applications. We
question this poor state of affairs. In this paper, we make
the case for a flexible key-value storage system (Flex-
KV) that can support both DRAM and disk-based stor-
age, can act as an unreliable cache or a durable store,
and operate consistently or inconsistently. The value of
such a system goes beyond ease-of-use: While exploring
these dimensions of durability, consistency, and avail-
ability, we find new choices for system designs, such as
a cache-consistent memcached, that offer some applica-
tions a better balance of performance and cost than was
previously available.

Categories and Subject Descriptors: D.4.7 [Oper-
ating Systems]: Organization and Design–Distributed
Systems; D.4.2 [Operating Systems]: Storage Manage-
ment; D.4.5 [Operating Systems]: Reliability–Fault-
tolerance;

General Terms: Design, Performance, Reliability

Keywords: Design, Performance, Cluster Computing

1 Motivation
We are witnessing an explosion of “NoSQL” storage sys-
tems, used by companies ranging from startups to in-
dustry giants including Amazon, Google, Facebook, and
Twitter [4, 9, 11]. Their popularity has resulted in cloud
service providers offering NoSQL key-value (KV) sys-
tems as building blocks for applications. Each system
provides slightly different semantics or is optimized for
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subtly different use cases. This situation is tragic: It im-
pedes the flexibility of cloud providers and developers by
forcing them to commit to a particular model, which they
can change only by switching to an entirely different sys-
tem. It furthermore misses numerous opportunities for
worthwhile designs that fall “in-between” existing stor-
age system design choices. In this paper, we argue that it
is possible to create one storage system that can meet the
needs of all of these applications.

Some applications or operations demand synchronous,
durable replication; others favor availability over consis-
tency; and for yet others, the cost of such safety is or-
ders of magnitude too expensive, making it impossible
to meet latency or throughput requirements. These re-
quirements sit on a multi-dimensional continuum, with
the breadth of NoSQL KV systems testifying to the value
of finding a design and implementation well matched
to one’s requirements. Flash memory and purely in-
memory datastores add yet more tradeoffs between se-
quential and random read/write performance, durability,
and power consumption, which further complicates the
design space for data storage systems.

Unfortunately, this demand places system designers
in a bind: Do they run multiple stores, each operat-
ing at maximum efficiency, or do they optimize instead
for system complexity by avoiding the need for multi-
ple codebases, vendors, configurations, and so on? We
argue that placing systems designers in this bind is un-
reasonable and, our work suggests, unnecessary. In-
stead, we show that a KV architecture designed right
can easily be configured to support many points along
this continuum, from weakly-consistent, non-replicated
caches [9] to strongly-consistent, durable disk-backed
key-value stores [6].

This paper argues that a design based on simple chain-
based replication enables such a flexible architecture. We
introduce Flex-KV, a configurable key-value storage sys-
tem that uses chain-based replication to effectively sup-
port a wide range of application requirements. Flex-KV
can support DRAM, disk, or Flash-based storage, can
support homogeneous or heterogeneous replica chains
that can act as an unreliable cache or a durable store,



and can trade strong data consistency for higher perfor-
mance by varying the communication protocols between
the replicas in the chain and selecting the query replica.
The value of such a system goes beyond ease-of-use:
While exploring these dimensions of durability, consis-
tency, and availability, we find new choices for system
designs supported by replica chains, such as a cache-
consistent memcached, that offer some applications a
better balance of performance and cost than was previ-
ously available. The schemes and preliminary results we
discuss in this paper use a simple hash-style key-value
system, but we believe that core design ideas apply to
other storage systems as well.

2 KV Design Space
Systems designers today must pick a particular imple-
mentation to meet their application’s needs. Current key-
value systems differ in three major ways:

Durability What happens to data when the entire KV
system is rebooted? Many key-value systems are used as
a DRAM cache backed by relational databases or stor-
age systems, e.g., the popular memcached system. On a
cache miss, data is fetched from the backend and is then
cached in the key-value system for future use. Updates
(puts and deletes) are committed to the backend storage
to guarantee data durability.

Other key-value systems act as the primary persistent
store without a backend database, e.g., MemcacheDB or
Redis [13]. There exist important differences in what
data these systems may lose upon failures: Some sacri-
fice performance to write data synchronously to disk, and
others favor a higher-performing asynchronous model.

Consistency Some applications may tolerate trading
consistency semantics for performance and availability,
e.g. Dynamo [4]. A strongly consistent system has the
same value across replicas for all keys. Weakly consis-
tent systems allow replicas to return older or different
values for any key. For notational clarity, we permit a
strongly consistent system that does not guarantee dura-
bility, in the face of failures, to either return “failure” or
an older value for a key, if it correctly informs the client
that the value is stale.

Availability in the presence of failures Failures affect
data recoverability, system response time, and through-
put. We classify availability as:

1. Data Availability (DA): What fraction of nodes can
fail before data loss, with a given replication factor?

2. Performance Availability (PA): On a failure, how
long does it take until performance is back to that
when there were no failures?

2.1 Example: A Memory-efficient Config-
uration

Existing KV caches offer two extreme options: non-
replicated configurations are memory efficient but suf-
fer from poor performance availability; in-memory repli-
cated schemes have higher memory overhead but better
performance availability. To bridge this extereme divide,
we propose a new design choice: A DRAM-based key-
value store that provides high performance availability
in the face of failures without the memory overhead of
the simple replication strategies used today.

Sites such as LiveJournal, Facebook, and Twitter use
memcached to support a read-mostly workload of mil-
lions of page views every day. Because of the huge per-
formance gap between the cache (100,000s of queries per
second) and the backing database (1,000s of queries per
second), they devote terabytes of DRAM so that nearly
all queries are served from cache. Writes invalidate en-
tries in memcached, and directly update the database for
persistence. Subsequent queries are then cached in mem-
cached after being fetched from the database.

The large gap between cache and DB performance
means that a cache node failure imposes a sudden high
load on the backend database—higher than it can han-
dle, degrading performance or even causing an entire
site failure [12]. These sites require high performance-
availability: they must continue to serve queries at in-
memory speeds in the presence of failures.

Non-replicated and in-memory replicated systems of-
fer two extreme options, with trade-offs between re-
covery time and memory overhead, shown as the “M”,
“M-M”, and “M-M-M” configurations in Figure 1. In-
memory replication, supported by systems such as mem-
cached [8], repcached, and Gear6 [5], improves per-
formance availability at the cost of at least twice as
much DRAM, already measured in terabytes. The non-
replicated system suffers long recovery time because it
must read all data into cache from the backend database,
potentially requiring random reads from disk.

Disk-backed cache with fast restore (M–D). Instead
of naively replicating in-memory, an alternate design
logs updates to disk on the replica (“M-D” configura-
tions in Figure 1). If the primary fails, the system can
rapidly stream the logged cache contents from disk to
memory. Synchronous updates can be sped up by buffer-
ing updates at the replica before flushing them to disk
asynchronously, giving rise to the variant M–(Mb . . .D)
– a mechanism used in RAMCloud [10]. Alternatively,
when used merely as a cache, it is acceptable to lose a
small recent window of writes, and so updates can be
propagated asynchronously to the disk replicas. To avoid
inconsistency, however, it is necessary to synchronously
invalidate entries on the replica (in-memory for speed).
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This combination is memory efficient while still serving
both reads and writes at memory speeds – a cache con-
sistent memcache.
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Figure 1: Disk backed replicas offer better tradeoffs
between memory overhead and performance avail-
ability compared to options available today.

3 Flex-KV – A Flexible KV System
To implement all the configurations described in the pre-
vious section, a KV architecture must be able to: sup-
port heterogeneous replicas (e.g., disk, Flash, memory,
etc.); direct queries and inserts appropriately (e.g., both
queries and inserts to the in-memory replica for high per-
formance, or queries to the tail and updates to the head
for strong consistency); send invalidations and updates
as configured; flexibly choose whether to send them syn-
chronously or asynchronously; and optionally consult an
invalidation table while applying updates on recovery.

Chain-based replication provides an effective mecha-
nism to implement these options. Flex-KV uses replica
chains on a consistent hashing ring. Consistent hashing
with virtual nodes balances load across the backends and
reduces repair time when nodes fail or new nodes join the
system. Our prior work, FAWN-KV [1], uses a similar
approach, but it supports only synchronous, durable, and
consistent updates to Flash-based replicas, while routing
queries to the tail of a replica chain. Flex-KV supports
the range of application requirements, listed in the previ-
ous section, by supporting:
Replica types: Flex-KV supports different replica types
that expose a common storage interface; examples in-
clude in-memory replicas (M), disk based logs (D) and
buffered logs (Mb . . .D). Flex-KV supports the addition
of new datastores as long as they adhere to the storage
interface. On each node, it is easy to combine different
types of datastores by chaining their interfaces together,
as is done in Anvil [7]. All update operations in Flex-KV

are log-structured thereby ensuring high performance on
different storage devices.
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Figure 2: Three options for propagating updates
through a chain of replicas.

Heterogeneous replica chains: Chaining of repli-
cas [15] provides the basis for a variety of system options
(e.g., creating M–D replica chains). Figure 2 shows sev-
eral example configurations. Updates arrive at the head
of the chain and propagate through the chain to the tail,
as in chain replication. Unlike conventional chain repli-
cation where queries are served by the tail of the chain,
Flex-KV allows queries to go to different nodes in each
replica chain. For example a high-performance config-
uration may wish to direct reads and writes to a mem-
ory based replica. This flexibility “breaks” the simple
structure of chain replication to also support a more con-
ventional primary-backup replication style. Supporting
synchronous insertions with read-from-head behavior re-
quires more flexible configuration of when nodes will re-
spond to queries they have already processed, marking
un-acknowledged but received writes as tentative. Flex-
KV hides the work of allocating replicas and managing
the topology, and separates these functions from, e.g., the
implementation of the replica’s per-node storage.
Flexible update “plumbing” between replicas: The
system separates update propagation and invalidation,
and allows each to be delivered synchronously or asyn-
chronously. We examine three ways to “plumb” replicas
together. Key to these options are the ability to add asyn-
chrony between purely memory-based replicas and disk
replicas, to allow the system to operate with memory la-
tency, not disk latency. Flex-KV can send updates using:

• Synchronous Updates (SU): Figure 2(a) shows
synchronous update propagation through a chain,
creating three consistent replicas. Updates succeed
only if all replicas are updated.
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• Asynchronous Updates with Synchronous Invali-
dations (AUSI): An update succeeds only if the pri-
mary commits the updated value and all secondary
replicas receive invalidations (Figure 2(b)). Sec-
ondary replicas maintain an in-memory invalidation
map. Updates are sent in batches from the pri-
mary to secondary replicas. Secondary replicas can
clear their invalidation map after applying a batch
of updates. This scheme enables coherent memory
caches that recover from disk (e.g., the example in
the previous section).

• Asynchronous Updates (AU): An update succeeds
if the primary replica commits the updated value.
Secondary replicas receive either individual updates
or a batch of updates asynchronously. (Figure 2(c))

Replication factor: Flex-KV allows configuring the sys-
tem with an arbitrary replication factor. Flex-KV main-
tains this replication factor as long as it is possible to do
so. On a node addition the replication factor of the chain
it joins goes up by one and it is restored by relinquishing
the current tail replica. On a node failure, the replication
factor of the affected chain goes down by one and it is
restored by recruiting a new tail for this chain. To en-
sure high performance, node additions and removals are
non-blocking operations.

In summary, Flex-KV supports many different key-
value system configurations using four simple knobs
(Figure 3):

1. Replication Factor;
2. Replica Type: Memory, Disk, Flash, Buffered Log,

etc.;
3. Update mechanism: SU, AUSI, and AU;
4. Query node: Replica to issue a read request to.
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End
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Individual Replica Types
(M, D, Mb...D, etc.)

Query Node Selection
(Tail, Mid, Head)

Update Type
(SU, AU, AUSI)

Replication Factor (R)

Figure 3: Flex-KV supports many different key-value
system configurations using four simple knobs.

Each configuration of our Flex-KV implementation
trades between durability, memory overhead, perfor-
mance, and recovery time. Figure 4 shows this trade-
off for five different Flex-KV configurations. In this

experiment each backend node stores 15,000 KV pairs
with 1KByte values. In-memory replication (M–M) uses
twice as much memory as its unreplicated counterpart,
but recovers instantly from a node failure. Heteroge-
neous replica chains (e.g., M–D) are memory efficient
and recover more rapidly from node failures than an un-
replicated node, and their recovery time is bound by se-
quential disk scan speeds. Schemes with synchronous
updates (SU) are slow when they involve synchronous
disk writes.

In the next two sections, we systematically vary the
knobs exposed by Flex-KV (Tables 1, 2). Each cell in
those tables represents a unique KV design, to illustrate
the coverage of design options provided by Flex-KV’s
configurability—some choices are similar to currently
available point solutions, and some offer new tradeoffs.
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Figure 4: Memory overhead, put latency, and recov-
ery time for different key-value configurations when
using Flex-KV. The size of the points indicate mem-
ory overhead: M–M uses twice as much memory as
its unreplicated counterpart.

3.1 Key-Value systems as caches
We start with KV systems with a backing database.
When used with an external database, a key-value stor-
age system (e.g., memcached) does not need to write
synchronously to disk for persistence. It may, however,
need replication for high performance-availability. Ta-
ble 1 compares systems constructed with different replica
types and update propagation mechanisms using four
metrics: Read speed, update speed, memory overhead,
and performance availability.

The horizontal axis in table 1 compares the results of
using different plumbing between replicas. In general,
synchronous updates provide consistency: A replica can
fail and the data is still available in cache, but they bound
the system performance to that of the slowest replica in
the chain. Asynchronous updates lack consistency, but
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Synchronous Updates Async Updates, Synch Invalidations Asynchronous Updates
Configuration (SU) (AUSI) (AU)

Consistent Consistent Weakly Consistent

In-memory Replication Updates: Fast Updates: Faster for large values Updates: Fast
M–M (slower than non-replicated systems)
+Backing Database(D) PA: Instant recovery PA: Nearly Instant PA: Instant
Memory inefficient (some cache misses)

Example: Gear6 Example: repcached [14]

Disk backed cache Updates: Slow due to disk flush at replica Updates: Faster for large values Updates: Fast
M–D (buffer for speed: M–(Mb . . .D)) (quick in-memory invalidations)
+Backing Database(D) PA: Disk scan PA: Disk scan PA: Disk scan
Memory efficient (some cache misses)

Table 1: KV configurations with a backing database providing durability. We show configurations with one
secondary replica, but the characteristics hold true for similar configurations with n secondary replicas.

allow the system to perform at the speed of the fastest
replica. AUSI updates provide consistency without data-
loss, and decouple performance, making them the best
choice when acting as a cache.

Durability: A backing database in all configurations en-
sures data durability across the board.

Memory overhead: All configurations with in-memory
replication have high overhead. M–D configurations
with synchronous invalidations need only store invalida-
tions in memory, and so their overhead is determined by
the frequency of the asynchronous updates and the work-
load’s update rate.

Update performance: Asynchronous updates are faster
than synchronous updates, but this speed advantage also
depends on the write cost at the next replica; even
memory-to-memory replicas may be faster using AUSI
updates if the updates are large. Disk-based replicas ben-
efit more from asynchrony.

Performance Availability (PA): Configurations with
both SU and AU recover almost instantaneously on fail-
ure. M–M recovers almost instantaneously. M–D is
slower than M–M but is still much faster than random
queries to the backing DB. The reason these configu-
rations are not as rapid as M–M during recovery is be-
cause M–D involves a sequential scan of the log on the
disk. The performance availability of configurations with
AUSI are sightly worse than the corresponding configu-
rations of SU or AU, because they involve applying in-
validations and might incur cache misses for accesses of
those key-value pairs that are invalidated. Figure 4, for
example, shows the best case recovery time for the AUSI
scheme where there are hardly any cache misses on re-
covery.

3.2 Key-Value systems as stores
Without a backing DB, most configurations retain the
same properties, with one crucial difference: Durabil-
ity. Configurations using only DRAM are not durable
(Table 2), but neither does a configuration with a disk
replica guarantee durability: In the table, only configu-
rations with synchronous disk writes, either by starting
with a disk, e.g., D–D, or using SU propagation to disk,
e.g., M–D, are fully durable.

Configurations using AU and AUSI schemes with a
disk replica have window loss durability: the system
might have an older version of the value for some key, or
no value at all, if there is a failure of a primary before up-
dates are propagated to replicas. AUSI invalidations only
provide correct durability if the invalidations are written
synchronously to disk; this does not matter in the cache
case, because if both the memory and disk replica fail,
the system can recover from the database with some loss
of performance. Configurations using AUSI can inform
clients that the system lacks the latest update in case of
such a failure. Using fully asynchronous updates risks
undetected inconsistency.

Window loss durability may suffice for situations in
which rare instance of stale data could be acceptable,
e.g., for data such as web counters or “last visitors” lists,
but where complete data loss over all time would not.

4 A Flexible Future
A first question our work raises is how users of stor-
age systems should choose a configuration. Although
orthogonal to the arguments of this paper, this question
needs to be addressed in the future, not only for Flex-KV,
but also for storage systems that provide different guar-
antees and tradeoffs at large.

A second important future question is how to extend
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Synchronous Updates Async Updates, Synch Invalidations Asynchronous Updates
Configuration (SU) (AUSI) (AU)

Consistent Consistent Weakly Consistent
M–M Not Durable Not Durable Not Durable
Memory Inefficient Example: Gear6, scalaris Example: repcached
M–(Mb . . .D) Window-loss Durable Window-loss Durable (Cognizant of loss) Window-Loss Durable
Memory Efficient Example: RAMCloud
M–D Durable Window-loss Durable (Cognizant of loss) Window-Loss Durable
Memory Efficient Example: Redis
Disk or Flash based Durable Window Loss Durable (Cognizant of loss) Window Loss Durable
D–D Example: FAWN-KV, Hibari Example: Tokyo Tyrant

Table 2: Comparison of different KV configurations without a backing database, all supported by Flex-KV.

the Flex-KV idea to encompass more “NoSQL” designs.
Dynamo [4] shows one additional design axis: it trades
consistency for partition tolerance. Systems such as
Redis [13] (a data structure server supporting strings,
hashes, lists, sets and sorted sets); BigTable [2] (column-
oriented storage); and MongoDB [3] (document-based
storage) all demonstrate the value of richer data models.

Creating “one store for all” is difficult, and it is likely
that no one system can truly meet the needs of all users.
However, our progress designing Flex-KV suggests that
the right set of configuration and coupling primitives can
make structured storage systems able to satisfy a wide
variety of performance, consistency, and durability re-
quirements. We believe that future research addressing
these challenges is important.
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