
In Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST ’08)
San Jose, California, February 2008

Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems

Amar Phanishayee, Elie Krevat, Vijay Vasudevan,
David G. Andersen, Gregory R. Ganger, Garth A. Gibson, Srinivasan Seshan

Carnegie Mellon University

Abstract

Cluster-based and iSCSI-based storage systems rely on
standard TCP/IP-over-Ethernet for client access to data.
Unfortunately, when data is striped over multiple net-
worked storage nodes, a client can experience a TCP
throughput collapse that results in much lower read band-
width than should be provided by the available network
links. Conceptually, this problem arises because the client
simultaneously reads fragments of a data block from mul-
tiple sources that together send enough data to overload
the switch buffers on the client’s link. This paper analyzes
this Incast problem, explores its sensitivity to various sys-
tem parameters, and examines the effectiveness of alterna-
tive TCP- and Ethernet-level strategies in mitigating the
TCP throughput collapse.

1 Introduction
Cluster-based storage systems are becoming an increas-
ingly important target for both research and indus-
try [1, 36, 15, 24, 14, 8]. These storage systems consist
of a networked set of smaller storage servers, with data
spread across these servers to increase performance and re-
liability. Building these systems using commodity TCP/IP
and Ethernet networks is attractive because of their low
cost and ease-of-use, and because of the desire to share
the bandwidth of a storage cluster over multiple compute
clusters, visualization systems, and personal machines.
Furthermore, non-IP storage networking lacks some of
the mature capabilities and breadth of services available
in IP networks. However, building storage systems on
TCP/IP and Ethernet poses several challenges. In this pa-
per, we analyze one important barrier to high-performance
storage over TCP/IP: the Incast problem [24].1

Incast is a catastrophic TCP throughput collapse that
occurs as the number of storage servers sending data to a

1Some people use the term incast to characterize many-to-one com-
munication. In this paper, we use the term Incast to refer to TCP
throughput collapse in a synchronized reads setting.

client increases past the ability of an Ethernet switch to
buffer packets. As we explore further in §2, the problem
arises from a subtle interaction between limited Ethernet
switch buffer sizes, the communication patterns common
in cluster-based storage systems, and TCP’s loss recovery
mechanisms. Briefly put, data striping couples the behav-
ior of multiple storage servers, so the system is limited
by the request completion time of the slowest storage
node [7]. Small Ethernet buffers are exhausted by a con-
current flood of traffic from many servers, which results
in packet loss and one or more TCP timeouts. These
timeouts impose a delay of hundreds of milliseconds–
orders of magnitude greater than typical data fetch times–
significantly degrading overall throughput.

This paper provides three contributions. First, we ex-
plore in detail the root causes of the Incast problem,
characterizing its behavior under a variety of conditions
(buffer space, varying numbers of servers, etc.). We find
that Incast is a general barrier to increasing the number
of source nodes in a cluster-based storage system. While
increasing the amount of buffer space available can delay
the onset of Incast, any particular switch configuration
will have some maximum number of servers that can send
simultaneously before throughput collapse occurs.

Second, we examine the effectiveness of existing TCP
variants (e.g., Reno [3], NewReno [13], SACK [22], and
limited transmit [2]) designed to improve the robustness
of TCP’s loss recovery. While we do find that the move
from Reno to NewReno substantially improves perfor-
mance, none of the additional improvements help. Fun-
damentally, when TCP loses all packets in its window or
loses retransmissions, no clever loss recovery algorithms
can help.

Third, we examine a set of techniques that are mod-
erately effective in masking Incast, such as drastically
reducing TCP’s retransmission timeout timer. With some
of these solutions, building a high-performance, scalable
cluster storage system atop TCP/IP and Ethernet can be
practical. Unfortunately, while these techniques can be
effective, none of them is without drawbacks. Our final

Data Block

Server Request
Unit (SRU)

Servers
1

1

4

2
2

3

4

3

Client

Switch

Figure 1: A simple cluster-based storage environment with
one client requesting data from multiple servers through
synchronized reads.

conclusion is that no existing solutions are entirely suffi-
cient, and further research is clearly indicated to devise a
principled solution for the Incast problem.

2 Background

In cluster-based storage systems, data is stored across
many storage servers to improve both reliability and per-
formance. Typically, their networks have high bandwidth
(1-10 Gbps) and low latency (round trip times of tens to
hundreds of microseconds) with clients separated from
storage servers by one or more switches.

In this environment, data blocks are striped over a num-
ber of servers, such that each server stores a fragment of
a data block, denoted as a Server Request Unit (SRU), as
shown in Figure 1. A client requesting a data block sends
request packets to all of the storage servers containing
data for that particular block; the client requests the next
block only after it has received all the data for the current
block. We refer to such reads as synchronized reads.

This simple environment abstracts away many details
of real storage systems, such as multiple stripes per data
block, multiple outstanding block requests from a client,
and multiple clients on a single switch making requests
across a shared subset of servers. However, this is the
most basic representative setting in which Incast can oc-
cur and simplifies our analysis.

The need for a high performance environment that sup-
ports parallel operations such as synchronized reads is par-
ticularly important because of such recent projects as Par-
allel NFS (pNFS). pNFS is a component of NFSv4.1 that
supports parallel data transfers and data striping across
multiple file servers [37, 28, 18].

Most networks are provisioned so the client’s link ca-
pacity to the switch is the throughput bottleneck of any

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
(SRU = 256KB)

HP Procurve 2848

Figure 2: TCP throughput collapse for a synchronized
reads application performed on a storage cluster.

parallel data transfer [16, 21]. Unfortunately, when per-
forming synchronized reads for data blocks across an
increasing number of servers, a client may observe a TCP
throughput drop of one or two orders of magnitude below
its link capacity. Figure 2 illustrates this performance drop
in a cluster-based storage network environment when a
client requests data from just seven servers.

Early parallel network storage projects, such as the
NASD project [15], observed TCP throughput collapse
in cluster-based storage systems during synchronous data
transfers. This was documented as part of a larger paper
by Nagle et al. [24], who termed the problem Incast and
attributed it to multiple senders overwhelming a fixed-size
switch buffer. However, while Nagle demonstrated the
problem and suggested that an alternative TCP implemen-
tation shows a modest improvement, a full analysis and
measurement of the problem was not performed nor were
possible solutions presented.

Incast has not been thoroughly studied. Current sys-
tems attempt to avoid TCP throughput collapse by limit-
ing the number of servers involved in any block transfer,
or by artificially limiting the rate at which they transfer
data. These solutions, however, are typically specific to
one configuration (e.g. a number of servers, data block
sizes, link capacities, etc.), and thus are not robust to
changes in the storage network environment.

3 Experimental Setup

In this section, we describe the simulation and real system
environments where we measure the effects of Incast and
the corresponding workloads that we use in both settings.

Parameter Default
Number of servers —
SRU Size 256KB
Link Bandwidth 1 Gbps
Round Trip Time (RTT) 100µs
Per-port switch output buffer size —
TCP Implementation: Reno, NewReno, SACK NewReno

Limited Transmit disabled
Duplicate-ACK threshold (dathresh) 3
Slow Start enabled
RTOmin 200ms

Table 1: Simulation parameters with default settings.

3.1 Simulation Environment
All of our simulations use ns-2 [27], an event-driven net-
work simulator that models networked applications at the
packet granularity. Our default simulation configuration
consists of one client and multiple servers all connected
to the same switch as shown in Figure 1.

Table 1 shows the parameters and their corresponding
default values that we vary in simulation. We choose
a 256KB default SRU size to model a production stor-
age system [9]. From our simulations, we obtain global
and per-flow TCP statistics such as retransmission events,
timeout events, TCP window sizes, and other TCP param-
eters to aid in our analysis of Incast.

Our test application performs synchronized reads over
TCP in ns-2 to model a typical striped file system data
transfer operation. The client requests a data block from n
servers by sending a request packet to each server for one
SRU worth of data. When a client receives the entire data
block of n·SRU total bytes, it immediately sends request
packets for the next block. Each measurement runs for
20 seconds of simulated time, transferring enough data to
accurately calculate throughput.

3.2 Cluster-based Storage Environment
Our experiments use a networked group of storage servers
as configured in production storage systems. Our appli-
cation performs the same synchronized reads protocol as
in simulation and measures the achieved throughput. All
systems have 1 Gbps links and a client-to-server Round
Trip Time (RTT) of approximately 100µs. We evaluated
three different storage clusters:

• Procurve: One or more HP Procurve 2848 Ethernet
switches configured in a tree hierarchy connect a
client to up to 64 servers, each running Linux 2.6.18
SMP.2

• S50: A Force10 S50 switch connects 48 Redhat4
Linux 2.6.9-22 machines on one switch (1 client, 47

2Although this topology does not exactly match our simulation topol-
ogy, we find that multiple switches do not prevent Incast.

servers).

• E1200: A Force10 E1200 switch with 672 ports
with at least 1MB output buffer per port. This switch
connects 88 Redhat4 Linux 2.6.9-22 machines (1
client, 87 servers).

For our workload and analysis, we keep the SRU size
fixed while we scale the number of servers, implicitly in-
creasing the data block size with the number of servers.3

4 Reproducing Incast

In this section, we first demonstrate Incast occurring in
several real-world cluster-based storage environments.
Using simulation, we then show that Incast is a generic
problem and identify the causes of Incast. We find that
the results obtained from our experimental setup validate
our simulation results. Finally, we show that attempts
to mitigate Incast by varying parameters such as switch
buffer size and SRU size are incomplete solutions that ei-
ther scale poorly or introduce system inefficiencies when
interacting with a storage system.

4.1 Incast in real systems

To ensure that the throughput collapse shown in Figure 2
is not an isolated instance, we study Incast on the three
storage clusters described in §3.2. Figure 3 indicates that
both the Procurve and S50 environments experience up
to an order of magnitude drop in goodput (throughput as
observed by the application). The E1200, however, did
not exhibit any throughput drop for up to the 87 available
servers, which we attribute to the large amount of buffer
space available on the switch.

In our analysis, we use estimates of the output buffer
sizes gathered from network administrators and switch
specifications. Unfortunately, we are unable to determine
the exact per-port buffer sizes on these switches.4 This
information is not available because most switches dy-
namically allocate each link’s output buffer from a shared
memory pool. Also, when QoS queues are enabled, the
amount of memory allocated to the queues depends on
vendor-specific implementations. However, our estimates
for output buffer sizes are corroborated by simulation
results.

3Some storage systems might instead scale by keeping the block size
fixed and increasing the number of servers used to stripe data over. We
explore the effects of a fixed block size scaling model in §4.

4While most modern switches use Combined Input-Output Queuing
(CIOQ), we focus our attention on the output buffer size. Since our
simulation results are validated by our experimental results, we did not
find it necessary to model additional complexity into our switches in
simulation.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (SRU = 256KB)

HP Procurve 2848 (QoS)
HP Procurve 2848 (No QoS)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (SRU = 256KB)

Force 10 S50 (QoS)
Force 10 S50 (No QoS)

(a) HP Procurve 2848 (b) Force10 S50

Figure 3: Incast observed on different switch configurations with and without QoS support. Disabling QoS support has
only a small effect for (a) the HP Procurve 2848, but significantly delays the onset of Incast for (b) the Force10 S50.

Many switches provide QoS support to enable prior-
itization of different kinds of traffic. A common imple-
mentation technique for providing QoS is to partition
the output queue for each class of service. As a result,
disabling QoS increases the effective size of the output
queues, though the amount of this increase varies across
different vendors and switches. As shown in Figure 3(a),
disabling QoS on the Procurve environment does not
significantly affect throughput – a collapse still occurs
around 7 servers. In contrast, Figure 3(b) shows that dis-
abling QoS on the Force10 S50 significantly delays the
onset of Incast. These results suggest that the Force10
S50 allocates a relatively larger amount of buffer space
and switch resources to QoS support in comparison to the
Procurve 2848. Switch buffer sizes play an important role
in mitigating Incast, as we evaluate in §4.3.

4.2 Validation and Analysis in Simulation

To determine how general a problem Incast is for cluster-
based storage over TCP/IP/Ethernet, we also reproduce
Incast in the ns-2 network simulator. Figure 4 shows In-
cast in simulation with an order of magnitude collapse at
around 8 servers and beyond. These results closely match
those from the Procurve environment. The differences
between the results, including the difference in behavior
below 3 servers, have a few possible causes. First, simu-
lated source nodes serve data as rapidly as the network can
handle, while real systems often have other slight delays.
We attribute the lower performance of the real system
between 1-3 servers to these differences. Also, simulation
does not model Ethernet switching behavior, which may
introduce small timing and performance differences.

Despite these differences, real world experiments vali-
date our simulation measurements, showing that the im-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (SRU = 256KB)

Simulation with 32KB buffer
HP Procurve 2848 (No QoS)

Figure 4: Comparison of Incast in simulation and in real
world cluster-based settings.

pact of Incast is nearly identical in both real world system
measurements and simulation.

An analysis of the TCP traces obtained from simulation
reveals that TCP retransmission timeouts are the primary
cause of Incast (Figure 5).5 When goodput degrades,
most servers still send their SRU quickly, but one or more
other servers experience a timeout due to packet losses.
The servers that finish their transfer do not receive the
next request from the client until the client receives the
complete data block, resulting in an underutilized link.

5TCP goodput could also be degraded by a large number of packet
retransmissions that waste network capacity. We find, however, that
retransmitted packets make up only about 2% of all transmissions. This
overhead is not significant when compared to the penalty of a retrans-
mission timeout.

 0

 200

 400

 600

 800

 1000

 2 2.1 2.2 2.3 2.4 2.5

G
o
o
d
p
u
t
(M

b
p
s
)

time (seconds)

timeout

event

Instantaneous Goodput Over Time

 Block

Request 1

 Block

Request 2

 Block

Request 3

 Block

Request 4

Figure 5: Instantaneous goodput averaged over 5ms inter-
vals. Timeouts are the primary cause of Incast, and one
stalled flow during a block transfer results in an idle link
duration of around 200ms. Timeout events indicate when a
flow begins recovery.

4.2.1 Why Timeouts Occur

The rest of the paper assumes a familiarity with TCP
terms and concepts. For a brief refresher on TCP, we refer
the reader to the Appendix.

Reading blocks of data results in simultaneous trans-
mission of packets from servers. Because the buffer space
associated with the output port of the switch is limited,
these simultaneous transmissions can overload the buffer
resulting in losses. TCP recovers from losses by retrans-
mitting packets that it has detected as being lost. This loss
detection is either data-driven or is based on a timeout for
a packet at the sender.

A TCP sender assigns sequence numbers to transmitted
packets and expects TCP acknowledgements (ACKs) for
individual packets from the receiver. The TCP receiver
acknowledges the last packet it received in-order. Out-of-
order packets generate duplicate ACKs for the last packet
received in-order. Receiving multiple duplicate ACKs for
a packet is an indication of a loss – this is data-driven
loss detection. Timeouts are used as a fallback option
in the absence of enough feedback, and are typically an
indication of severe congestion.

In Figure 3(a), we see an initial drop from 900Mbps
to 500Mbps between 3-5 servers on the Procurve. Anal-
ysis of TCP logs reveal that this drop in throughput is
caused by the delayed ACK mechanism [3]. In the de-
layed ACK specification, an acknowledgement should be
generated for at least every second packet and must be
generated within 200ms of the arrival of the first unac-
knowledged packet. Most TCP implementations wait only

Finding Location
Incast is caused by too-small switch output
buffers: increasing buffer size can alleviate
the situation.

§4.3

TCP NewReno and SACK improve good-
put considerably over TCP Reno, but do
not prevent Incast.

§5.1.1

Improvements to TCP loss recovery using
Limited Transmit or reducing the Duplicate
ACK threshold do not help.

§5.1.2

Reducing the penalty of a timeout by lower-
ing the minimum retransmission value can
help significantly, but poses questions of
safety and generality.

§5.2

Enabling Ethernet Flow Control is effective
only in the very simplest setting, but not for
more common multi-switched systems.

§6

Table 2: Summary of Major Results.

40ms before generating this ACK. This 40ms delay causes
a “mini-timeout”, leading to underutilized link capacity
similar to a normal timeout. However, normal timeouts
are responsible for the order of magnitude collapse seen
beyond 5 servers in Incast. We explore TCP-level so-
lutions to avoid timeouts and to reduce the penalty of
timeouts in detail in §5.

4.3 Reducing Losses: Larger Switch
Buffers

Since timeouts are the primary cause of Incast, we try to
prevent the root cause of timeouts – packet losses – to
mitigate Incast by increasing the available buffer space
allocated at the Ethernet switch. §4.1 mentioned that a
larger switch buffer size delays the onset of Incast. Fig-
ure 6 shows that doubling the size of the switch’s output
port buffer in simulation doubles the number of servers
that can transmit before the system experiences Incast.

With a large enough buffer space, Incast can be avoided
for a certain number of servers, as shown in Figure 6.
This is corroborated by the fact that we were unable to
observe Incast with 87 servers on the Force10 E1200
switch, which has very large buffers. But Figure 6 shows
that for a 1024KB buffer, 64 servers only utilize about
65% of the client’s link bandwidth, and doubling the
number of servers only improves goodput to 800Mbps.

Unfortunately, switches with larger buffers tend to
cost more (the E1200 switch costs over $500,000
USD), forcing system designers to choose between over-
provisioning, future scalability, and hardware budgets.
Furthermore, switch manufacturers may need to move to
faster and more expensive memory (e.g., SRAM) as they

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 (SRU = 256KB)

32KB buf
64KB buf

128KB buf
256KB buf
512KB buf

1024KB buf

Figure 6: Effect of varying switch buffer size – doubling the
size of the switch’s output port buffer doubles the number
of servers that can be supported before the system experi-
ences Incast.

move to 10Gbps and beyond. This move places cost pres-
sure on manufacturers to keep buffer sizes small. Hence a
more cost-effective solution other than increasing buffer
sizes is required.

While the above experiments are run in a controlled en-
vironment with only one client reading from many servers,
real storage environments are likely more complicated,
with many clients making multiple concurrent requests
to different sets of servers. Since the amount of buffer
space available per client request likely decreases in com-
mon shared memory switch architectures (and does not
increase otherwise), we expect overall performance to be
worse in these more complex environments.

4.4 Reducing Idle Link Time by Increasing
SRU Size

Figure 7 illustrates that increasing the SRU size improves
the overall goodput. With 64 servers, the 1000KB SRU
size run is two orders of magnitude faster than the 10KB
SRU size run. Figure 8 shows that real switches, in this
case the Force10 S50, behave similarly.

TCP performs well in settings without synchronized
reads, which can be modeled by an infinite SRU size. The
simple TCP throughput tests in netperf do not exhibit
Incast [24]. With larger SRU sizes, servers will use the
spare link capacity made available by any stalled flow
waiting for a timeout event; this effectively reduces the
ratio of timeout time to transfer time.

A large SRU size helps maximize disk head utilization
on reads. Unfortunately, an SRU size of even 8MB is
quite impractical: most applications ask for data in small
chunks, corresponding to an SRU size range of 1-256KB.
For example, when requesting an 8MB block from the
storage system, one would like to stripe this block across

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
(Buffer = 64KB)

10KB
100KB

256KB
1000KB

8000KB

Figure 7: Effect of varying SRU size – for a given number
of servers, a larger SRU improves goodput.

as many servers as needed to saturate the link. In addition,
a larger SRU size can increase lock contention due to
overlapping writes, leading to poor write performance in
file system implementations [9].

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 4 8 16

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers

SRU = 100KB
SRU = 256KB

SRU = 1000KB

Figure 8: Effect of varying SRU size for Force10 S50 with
QoS support enabled.

Figure 9 shows an alternative scaling model in simula-
tion where the data block size is fixed and the number of
storage servers are increased, placing an upper bound per
request on the amount of pinned kernel memory in the
client. This scaling model more closely resembles how
file systems request data. A rapid drop-off in goodput is
observed for a fixed block size as the number of servers
increases. Because the data block size is fixed, increasing
the number of servers reduces the SRU size. Thus, the
effect of increasing the number of servers is compounded
by a reduced SRU size and results in even lower goodput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
(Buffer = 64KB)

block size = 4MB
block size = 1MB

Figure 9: For a fixed data block size, as opposed to a fixed
SRU size, increasing the number of servers also reduces the
SRU size requested from each server and results in even
lower goodput.

5 TCP-level Solutions
Because TCP timeouts are the primary reason that In-
cast hurts throughput, we analyze TCP-level solutions
designed to reduce both the number and penalty of time-
outs. We perform this analysis using ns-2 simulations.

5.1 Avoiding Timeouts
In this section, we analyze three different approaches to
avoiding timeouts by:

• Improving TCP’s resilience to common loss patterns
by using alternative TCP implementations;

• Addressing the lack of sufficient data-driven feed-
back;

• Reducing the traffic injection rate of exponentially
growing TCP windows during slow-start [3].

Analysis Method - Performance and Timeout Cat-
egorization: For each approach, we ask two questions:
1) how much does the approach improve goodput and
2) if timeouts still occur, why? To answer the second
question, we look at the number of Duplicate ACKs Re-
ceived at the point when a flow experiences a Timeout
(the DART count). The purpose of this analysis is to
categorize the situations under which timeouts occur to
understand whether the timeout could have been avoided.

There are three types of timeouts that cannot be avoided
by most TCP implementations. The first occurs when an
entire window of data is lost and there is no feedback
available for TCP to use in recovery, leading to a DART
value of zero. We categorize this kind of timeout as a Full
Window Loss.

The second type occurs when the last packet of an SRU
is dropped and there is no further data available in this

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

TCP Implementation Comparison
 (SRU = 256KB, buffer = 64KB)

reno
newreno

sack

Figure 10: NewReno outperforms Reno and SACK

block request for data-driven recovery. We categorize
this type of timeout as a Last Packet Loss case. We find,
however, that there are relatively few Last Packet Loss
cases.

The last unavoidable timeout situation occurs when
a retransmitted packet triggered by TCP’s loss recovery
mechanism is also dropped. Since there is no way for
the sender to know whether this retransmitted packet is
dropped, the sender experiences a timeout before retrans-
mitting the packet again. We categorize this unavoidable
timeout as a Lost Retransmit. The DART count does not
help in categorizing Lost Retransmit cases; we examine
the TCP trace files to identify these situations.

5.1.1 Alternative TCP Implementations – Reno,
NewReno, and SACK

Many TCP variants help reduce expensive timeouts by us-
ing acknowledgements to more precisely identify packet
losses [19, 3, 13, 22]. A well-documented problem with
the classic TCP Reno algorithm is that it recovers poorly
from multiple losses in a window, leaving it susceptible
to patterns of loss that cause a timeout [13]. For example,
with a window size of six, Reno will always experience a
timeout when the first two packets of the window are lost.

The most popular solutions to this problem are the im-
proved retransmission algorithms in TCP NewReno [13]
and the selective acknowledgements scheme in TCP
SACK [22]. TCP NewReno, unlike Reno, does not exit
fast recovery and fast retransmit when it receives a partial
ACK (an indication of another loss in the original win-
dow), but instead immediately transmits the next packet
indicated by the partial ACK. TCP SACK uses a selective
acknowledgment scheme to indicate the specific packets
in a window that need to be resent [12].

Figure 10 shows that both TCP NewReno and TCP
SACK outperform TCP Reno. Note that TCP NewReno
offers up to an order of magnitude better performance

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

of

 O
cc

ur
re

nc
es

of Duplicate ACKs at Timeout

Duplicate ACK Distribution
Total # of timeouts = 589. Blocks = 49

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

of

 O
cc

ur
re

nc
es

of Duplicate ACKs at Timeout

Duplicate ACK Distribution
Total # of timeouts = 442. Blocks = 89

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

of

 O
cc

ur
re

nc
es

of Duplicate ACKs at Timeout

Duplicate ACK Distribution
Total # of timeouts = 349. Blocks = 84

(a) Reno (b) NewReno (c) NewReno with dathresh = 1.

Figure 11: Distribution of Duplicate Acknowledgements Received at a Timeout (DART) recorded for a 20s run with 16
servers, 64 packet switch buffer, 256KBytes SRU size.

Reno NewReno NewReno + dathresh = 1
(Fig. 11(a)) (Fig. 11(b)) (Fig. 11(c))

data blocks transmitted 49 89 84
timeout events 589 442 349
full window losses 464 362 313
lost retransmits 61 2 41
lost retransmits when DART ≥ dathresh 0 0 34
lost retransmits when DART < dathresh 61 2 7
last packets dropped 2 5 2

Table 3: Categorization of timeout events under different TCP scenarios (corresponding to Figure 11)

compared to TCP Reno in this example. Unfortunately,
none of the TCP implementations can eliminate the large
penalty to goodput caused by Incast.

Figure 11(a) and (b) shows the DART distribution for
TCP Reno and NewReno, while Table 3 shows the catego-
rization of timeout events. The total number of timeouts
per data block is much lower for NewReno, partially ex-
plaining the goodput improvement over Reno. While
most timeouts can be categorized as Full Window Loss
cases or Lost Retransmit cases, there are still 78 timeouts
that do not fall into these cases: they occur when the
flows obtain some, but not enough feedback to trigger
data-driven loss recovery. We next examine two schemes
designed to improve these remaining cases.

5.1.2 Addressing the Lack of Sufficient Feedback
– Limited Transmit and Reduced Duplicate
ACK Threshold

When a flow has a small window or when a sufficiently
large number of packets in a large window are lost, Lim-
ited Transmit [2] attempts to ensure that enough packets
are sent to trigger the 3 duplicate ACKs necessary for
data-driven recovery. Alternatively, we can reduce the
duplicate ACK threshold (dathresh) from 3 to 1 to auto-
matically trigger fast retransmit and fast recovery upon
receiving any duplicate acknowledgement.

Figure 12 illustrates that neither of these mechanisms
provide any throughput benefit over TCP NewReno. We

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Comparison
 Limited Transmit, da_thresh=1, da_thresh=1 w/ no SlowStart

 (SRU = 256KB, buf = 64KB)

newreno
newreno, limited transmit

newreno, da_thresh = 1
newreno, da_thresh = 1, no slow start

Figure 12: NewReno variants designed to improve loss re-
covery provide no benefit.

plot the DART distribution for setting dathresh=1 in Fig-
ure 11(c). The reduced retransmit variant successfully
eliminates timeouts when only 1 or 2 duplicate ACKs
were received. Unfortunately, this improvement does
not increase goodput because each data block transfer
still experiences at least one timeout. These remaining
timeouts are mostly due to full window losses or lost re-
transmissions, which none of the TCP variants we study
can eliminate.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Comparison of Reno and Reno with reduced RTOmin
 (SRU = varying, buffer = 64KB)

reno 10KB
reno 256KB

reno 1000KB

reno_rto 10KB
reno_rto 256KB

reno_rto 1000KB

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 4 8 16 32 64 128

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

TCP Implementation Comparison (with reduced RTOmin)
 (SRU = 256K, buf = 64KB)

reno
newreno

reno_rto
newreno_rto

(a) Varying SRU sizes (b) Different TCP implementations

Figure 13: A lower RTO value (RTOmin = 200µs) in simulation improves goodput by an order of magnitude for both Reno
and NewReno. rto represents runs with a modified RTOmin value.

5.1.3 Disabling TCP Slow-Start

Finally, we disable TCP slow-start to prevent network
congestion produced by flows that exponentially increase
their window sizes to discover link capacity following a
timeout (or at the beginning of a TCP transfer). Figure 12
shows that forcing TCP flows to discover link capacity
using only additive increase does not alleviate the situ-
ation. We leave an analysis of even more conservative
congestion control algorithms for future work.

5.2 Reducing the Penalty of Timeouts
Because many of the TCP timeouts seem unavoidable (e.g.
Full Window Loss, Lost Retransmit), here we examine
reducing the time spent waiting for a timeout. While this
approach can significantly improve goodput, this solution
should be viewed with caution because it also increases
the risk of premature timeouts, particularly in the wide-
area [4]. We discuss the consequences of this effect below.

The penalty of a timeout, or the amount of time a flow
waits before retransmitting a lost packet without the “fast
retransmit” mechanism provided by three duplicate ACKs,
is the retransmission timeout (RTO). Estimating the right
RTO value is important for achieving a timely response
to packet losses while avoiding premature timeouts. A
premature timeout has two negative effects: 1) it leads
to a spurious retransmission; and 2) with every timeout,
TCP re-enters slow-start even though no packets were
lost. Since there is no congestion, TCP thus would under-
estimate the link capacity and throughput would suffer.
TCP has a conservative minimum RTO (RTOmin) value
to guard against spurious retransmissions [29, 19].

Popular TCP implementations use an RTOmin value of
200ms [35]. Unfortunately, this value is orders of mag-
nitude greater than the round-trip times in SAN settings,

which are typically around 100µs for existing 1Gbps Eth-
ernet SANs, and 10µs for Infiniband and 10Gbps Ethernet.
This large RTOmin imposes a huge throughput penalty be-
cause the transfer time for each data block is significantly
smaller than RTOmin.

Figure 13 shows that reducing RTOmin from 200ms
to 200µs improves goodput by an order of magnitude
for between 8 to 32 servers. In general, for any given
SRU size, reducing RTOmin to 200µs results in an order
of magnitude improvement in goodput using TCP Reno
(Figure 13(a)). Figure 13(b) shows that even with an
aggressive RTOmin value of 200µs, TCP NewReno still
observes a 30% decrease in goodput for 64 servers.

Unfortunately, setting RTOmin to such a small value
poses significant implementation challenges and raises
questions of safety and generality.

Implementation Problems: Reducing RTOmin to
200µs requires a TCP clock granularity of 100µs, ac-
cording the standard RTO estimation algorithm [29, 19].
BSD TCP and Linux TCP implementations are currently
unable to provide this fine-grained timer. BSD imple-
mentations expect the OS to provide two coarse-grained
“heartbeat” software interrupts every 200ms and 500ms,
which are used to handle internal per-connection timers
[5]; Linux TCP uses a TCP clock granularity of 1 to 10ms.
A TCP timer in microseconds needs either hardware sup-
port that does not exist or efficient software timers [6] that
are not available on most operating systems.

Safety and Generality: Even if sufficiently fine-
grained TCP timers were supported, reducing the RTOmin
value might be harmful, especially in situations where the
servers communicate with clients in the wide-area. All-
man et. al. [4] note that RTOmin can be used for trading
“timely response with premature timeouts” but there is no
optimal balance between the two in current TCP imple-

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1 2 4 8 16 32

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
 SRU = 256KB

One switch, EFC enabled
One switch, EFC disabled

Figure 14: Enabling Ethernet Flow Control can mitigate
Incast for a single-switch network.

mentations: a very low RTOmin value increases premature
timeouts. Earlier studies of RTO estimation in similar
high-bandwidth, low-latency ATM networks also show
that very low RTOmin values result in spurious retransmis-
sions [34] because variation in the round-trip-times in the
wide-area clash with the standard RTO estimator’s short
RTT memory.

6 Ethernet Flow Control

Some Ethernet switches provide a per-hop mechanism for
flow control that operates independently of TCP’s flow
control algorithm. When a switch that supports Ether-
net Flow Control (EFC) is overloaded with data, it may
send a “pause” frame to the interface sending data to the
congested buffer, informing all devices connected to that
interface to stop sending or forwarding data for a desig-
nated period of time. During this period, the overloaded
switch can reduce the pressure on its queues.

We find that EFC is effective in the simplest configura-
tion (i.e. all clients and servers connected to one switch),
but does not work well with more than one switch, has
adverse effects on other flows in all configurations, and is
inconsistently implemented across different switches.

We measure the effect of enabling Ethernet Flow Con-
trol on a single HP Procurve 2848 switch, where one
client and multiple servers are directly connected to the
switch. Figure 14 shows that EFC can significantly im-
prove performance. Unfortunately, TCP goodput is still
highly variable and is lower than it would be without
Incast.

Despite its potential benefits, our simple network topol-
ogy and workload hide adverse side effects that surface
when EFC is used on larger multi-switch networks with
many more clients and active TCP flows. For many of
these reasons, most switch vendors and network operators

keep EFC inactive.
The most significant problem with EFC is head-of-line

blocking, which occurs when a pause frame originating
from one congested interface stops several other flows
from communicating simultaneously. The effects of head-
of-line blocking can be particularly severe in heteroge-
neous bandwidth settings where one slow link can cause
other faster links to be underutilized. In other words,
pause frames pause all traffic entering an interface, re-
gardless of whether that traffic is causing congestion.

Due to the complexities of head-of-line blocking, and
because the particular interactions of EFC across multi-
ple switches is inconsistently implemented across switch
vendors, enabling EFC effectively across more than one
switch can be a difficult or impossible task. For instance,
in order to provide link aggregation between two HP
Procurve 2848 switches, our system was configured with
a virtual interface for the trunk – a configuration over
which the switch did not support flow control.

While Ethernet Flow Control currently interacts ad-
versely with other flows, a number of recent Ethernet
initiatives have been introduced to add congestion man-
agement with rate-limiting behavior and to improve the
pause functionality with a more granular per-channel ca-
pability [39]. These initiatives are part of a larger move-
ment to create a lossless and flow-controlled version of
Ethernet, referred to as Data Center Ethernet, which will
allow the consolidation of multiple communication fab-
rics (including storage networks running Fibre Channel)
into a single Ethernet solution.

Truly lossless behavior at the Ethernet level is a valid
solution to the Incast problem, but it will take a number
of years before these new standards are implemented in
switches, and even then there are no guarantees that new
switches will implement these standards uniformly or that
they will be as commoditized and inexpensive as current
Ethernet switches.

7 Related Work

Providing storage via a collection of storage servers net-
worked using commodity TCP/IP/Ethernet components
is an increasingly popular approach. The Incast prob-
lem studied comprehensively in this paper has been noted
previously by several researchers (e.g., [15, 17, 25, 24])
while developing this cluster-based approach.

Nagle et al. briefly discussed the switch buffer overruns
caused by clients reading striped data in a synchronized
many-to-one traffic pattern [25]. Upgrading to better
switches with larger buffer sizes was one adopted solution.
They also mentioned the possibility of using link-level
flow control, but highlight the difficulties of such an ap-
proach for different non-trivial switch topologies without

incorporating higher-level striping information used by
the storage system.

In later work, Nagle et al. again report on the effects
of Incast on scalable cluster-based file storage perfor-
mance [24]. Specifically, they report on experiments with
a production-quality system where a single client reads a
file sequentially using an 8MB synchronization block size
striped across multiple storage servers. As the number
of storage servers is increased for their system, keeping
all other variables of the network constant, the authors
observe a linear scaling of storage bandwidth for up to 7
storage servers, a steady plateau until around 14 servers,
and then a rapid drop-off. The primary cause of this
performance collapse was attributed to multiple senders
overwhelming the buffer size of the network switch. This
prior work also observed that the Incast problem does
not appear when running a streaming network benchmark
like netperf. Therefore, the performance collapse is
also attributed to the synchronized and coordinated reads
in a cluster-based storage environment. Nagle et al. also
discuss modest performance gains when using SACK
or reducing the length of TCP retransmission timeouts.
Although this last point is not quantified, they observe
that degraded performance still persists even with these
changes.

At a higher level, the Incast problem is a particular
form of network congestion, a topic which has been stud-
ied extensively in different environments. Early work
on congestion control in the wide-area network by Van
Jacobson addressed the TCP congestion collapse of the
Internet around 1985 [19]. Adopted as the basis of TCP
congestion control, the idea was to provide a method for a
networked connection to discover and dynamically adjust
to the available end-to-end bandwidth when transferring
data. Chiu and Jain describe why the window mechanism
of “additive increase / multiplicative decrease” achieves
fairness and stability in this setting [10].

Unfortunately, TCP’s congestion control and avoidance
algorithms are not directly applicable to all settings. For
example, they are known to have problems in wireless
settings, where packet losses may not actually be caused
by congestion. TCP also has problems in high-latency,
high-bandwidth network settings [20]. The Incast prob-
lem provides another example of a network setting where
using TCP may cause poor performance.

The performance and fairness of TCP when many flows
share the same bottleneck was studied by Morris [23]. As
the number of TCP flows through a bottleneck increases
to the point where there are more flows than packets
in the bandwidth-delay product, there is an increasingly
high loss rate and variation of unfair bandwidth allocation
across flows. This paper applies some of Morris’s meth-
ods and analysis techniques to the synchronized reads
setting that produces Incast.

8 Conclusion

Incast occurs when a client simultaneously receives a
short burst of data from multiple sources, overloading
the switch buffers associated with its network link such
that all original packets from some sources are dropped.
When this occurs, the client receives no data packets from
those sources and so sends no acknowledgement pack-
ets, requiring the sources to timeout and then retransmit.
Often, the result of these TCP timeouts is an order of
magnitude decrease in goodput.

Unfortunately, this traffic pattern is very common for
the growing class of cluster-based storage systems. When
data is striped across multiple storage nodes, each client
read creates this pattern and large sequential reads create
it repeatedly (once for each full stripe).

Whether or not Incast will cause goodput collapse in
a system depends on details of the TCP implementation,
network switch (especially buffer sizes), and system con-
figuration (e.g., the number of servers over which data is
striped). Unfortunately, avoiding collapse often requires
limiting striping to a small number of servers. Techniques
such as very short timeouts and link-level flow control can
mitigate the effects of Incast in some circumstances, but
have their own drawbacks. No existing solution is entirely
satisfactory, and additional research is needed to find new
solutions by building on the understanding provided by
this paper.

Acknowledgments

We are grateful to Jeff Butler, Abbie Matthews, and Brian
Mueller at Panasas Inc. for helping us conduct experi-
ments on their systems. We thank Michael Stroucken for
his help managing the PDL cluster. We thank our paper
shepherd Ric Wheeler, Michael Abd-El-Malek, and all
of our reviewers for their feedback. We also thank the
members and companies of the PDL Consortium (includ-
ing APC, Cisco, EMC, Google, Hewlett-Packard, Hitachi,
IBM, Intel, LSI, Microsoft, Network Appliance, Oracle,
Seagate, and Symantec) for their interest, insights, feed-
back, and support.

This material is based on research sponsored in
part by the National Science Foundation, via grants
#CNS-0546551, #CNS-0326453 and #CCF-0621499,
by the Army Research Office under agreement number
DAAD19–02–1–0389, by the Department of Energy un-
der award number DE-FC02-06ER25767, and by DARPA
under grant #HR00110710025. Elie Krevat is supported
in part by an NDSEG Fellowship from the Department of
Defense.

References

[1] ABD-EL-MALEK, M., II, W. V. C., CRANOR, C.,
GANGER, G. R., HENDRICKS, J., KLOSTERMAN,
A. J., MESNIER, M., PRASAD, M., SALMON,
B., SAMBASIVAN, R. R., SINNAMOHIDEEN, S.,
STRUNK, J. D., THERESKA, E., WACHS, M., AND
WYLIE, J. J. Ursa Minor: Versatile Cluster-based
Storage. In Proc. 4th USENIX Conference on File
and Storage Technologies (San Francisco, CA, Dec.
2005).

[2] ALLMAN, M., BALAKRISHNAN, H., AND FLOYD,
S. Enhancing TCP’s Loss Recovery Using Lim-
ited Transmit. Internet Engineering Task Force, Jan.
2001. RFC 3042.

[3] ALLMAN, M., AND PAXSON, V. TCP Congestion
Control. Internet Engineering Task Force, Apr. 1999.
RFC 2581.

[4] ALLMAN, M., AND PAXSON, V. On Estimating
End-to-End Network Path Properties. SIGCOMM
Comput. Commun. Rev. 31, 2 supplement (2001).

[5] ARON, M., AND DRUSCHEL, P. TCP Implemen-
tation Enhancements for Improving Webserver Per-
formance. Tech. Rep. TR99-335, Rice University,
June 1999.

[6] ARON, M., AND DRUSCHEL, P. Soft timers: Effi-
cient Microsecond Software Timer Support for Net-
work Processing. ACM Transactions on Computer
Systems 18, 3 (2000), 197–228.

[7] ARPACI-DUSSEAU, R. H., AND ARPACI-
DUSSEAU, A. C. Fail-Stutter Fault Tolerance. In
Proc. HotOS VIII (Schloss-Elmau, Germany, May
2001).

[8] BRAAM, P. J. File Systems for Clusters from a Pro-
tocol Perspective. http://www.lustre.org.

[9] BUTLER, J. Personal communication, Mar. 2007.
[10] CHIU, D.-M., AND JAIN, R. Analysis of the In-

crease and Decrease Algorithms for Congestion
Avoidance in Computer Networks. Computer Net-
works and ISDN Systems 17 (1989), 1–14.

[11] COMER, D. E. Internetworking with TCP/IP, Vol-
ume I: Principles, Protocols, and Architecture. Pren-
tice Hall, Englewood Cliffs, N.J, 2000.

[12] FALL, K., AND FLOYD, S. Simulation-based Com-
parisons of Tahoe, Reno, and Sack TCP. ACM Com-
puter Communications Review 26, 3 (July 1996),
5–21.

[13] FLOYD, S., HENDERSON, T., AND GURTOV, A.
The NewReno Modification to TCP’s Fast Recovery
Algorithm. Internet Engineering Task Force, Apr.
2004. RFC 3782.

[14] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-

T. The Google File System. In Proc. 19th ACM
Symposium on Operating Systems Principles (SOSP)
(Lake George, NY, Oct. 2003).

[15] GIBSON, G. A., NAGLE, D. F., AMIRI, K., BUT-
LER, J., CHANG, F. W., GOBIOFF, H., HARDIN,
C., RIEDEL, E., ROCHBERG, D., AND ZELENKA,
J. A Cost-Effective, High-Bandwidth Storage Archi-
tecture. In Proc. 8th International Conf. on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS) (San Jose, CA, Oct.
1998).

[16] GRIDER, G., CHEN, H., JUNEZ., J., POOLE, S.,
WACHA, R., FIELDS, P., MARTINEZ, R., KHALSA,
S., MATTHEWS, A., AND GIBSON, G. PaScal - A
New Parallel and Scalable Server IO Networking In-
frastructure for Supporting Global Storage/File Sys-
tems in Large-size Linux Clusters. In Proceedings
of the 25th IEEE International Performance Com-
puting and Communications Conference, Phoenix,
AZ (Apr. 2006).

[17] HASKIN, R. High performance NFS. Panel: High
Performance NFS: Facts & Fictions, SC’06.

[18] HILDEBRAND, D., HONEYMAN, P., AND ADAM-
SON, W. A. pNFS and Linux: Working Towards
a Heterogeneous Future. In 8th LCI International
Conference on High-Performance Cluster Comput-
ing (Lake Tahoe, CA, May 2007).

[19] JACOBSON, V. Congestion Avoidance and Con-
trol. In Proc. ACM SIGCOMM (Vancouver, British
Columbia, Canada, Sept. 1998), pp. 314–329.

[20] KATABI, D., HANDLEY, M., AND ROHRS, C. Con-
gestion Control for High Bandwidth-Delay Product
Networks. In Proc. ACM SIGCOMM (Pittsburgh,
PA, Aug. 2002).

[21] LEISERSON, C. E. Fat-trees: Universal Networks
for Hardware-efficient Supercomputing. IEEE
Transactions on Computers 34 (Oct. 1985), 892–
901.

[22] MATHIS, M., MAHDAVI, J., FLOYD, S., AND RO-
MANOW, A. TCP Selective Acknowledgment Op-
tions. Internet Engineering Task Force, 1996. RFC
2018.

[23] MORRIS, R. TCP Behavior with Many Flows. In
IEEE International Conference on Network Proto-
cols (ICNP) (Oct. 1997).

[24] NAGLE, D., SERENYI, D., AND MATTHEWS, A.
The Panasas ActiveScale Storage Cluster: Deliver-
ing Scalable High Bandwidth Storage. In SC ’04:
Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing (Washington, DC, USA, 2004).

[25] NAGLE, D. F., GANGER, G. R., BUTLER, J.,
GOODSON, G., AND SABOL, C. Network Support

http://www.lustre.org

for Network-attached Storage. In Hot Interconnects
(Stanford, CA, 1999).

[26] NOUREDDINE, W., AND TOBAGI, F. The trans-
mission control protocol: an introduction to tcp and
a research survey. Tech. rep., Stanford University,
2002.

[27] ns-2 Network Simulator.
http://www.isi.edu/nsnam/ns/, 2000.

[28] PAWLOWSKI, B., AND SHEPLER, S. Network File
System Version 4 (nfsv4) charter page.

[29] PAXSON, V., AND ALLMAN, M. Computing TCP’s
Retransmission Timer. Internet Engineering Task
Force, Nov. 2000. RFC 2988.

[30] PETERSON, L. L., AND DAVIE, B. S. Computer
Networks: A Systems Approach. Morgan Kaufmann
Publishers, San Fransisco, CA, 2003.

[31] POSTEL, J. B. User Datagram Protocol. Internet
Engineering Task Force, Aug. 1980. RFC 768.

[32] POSTEL, J. B. Internet Protocol. Internet Engi-
neering Task Force, Information Sciences Institute,
Marina del Rey, CA, Sept. 1981. RFC 791.

[33] POSTEL, J. B. Transmission Control Protocol. In-
ternet Engineering Task Force, Sept. 1981. RFC
793.

[34] ROMANOW, A., AND FLOYD, S. Dynamics of
TCP traffic over ATM networks. ACM Computer
Communications Review 24, 4 (1994), 79–88.

[35] SAROLAHTI, P., AND KUZNETSOV, A. Congestion
control in Linux TCP. In Proc. USENIX Annual
Technical Conference (Berkeley, CA, June 2002).

[36] SCHMUCK, F., AND HASKIN, R. GPFS: A Shared-
Disk File System for Large Computing Clusters.
In Proc. USENIX Conference on File and Storage
Technologies (FAST) (Monterey, CA, Jan. 2002).

[37] SHEPLER, S., EISLER, M., AND NOVECK, D.
NFSv4 Minor Version 1 – Draft Standard.

[38] STEVENS, W. R. TCP/IP Illustrated, Volume 1.
Addison-Wesley, Reading, MA, 1994.

[39] WADEKAR, M. Enhanced Ethernet for Data Center:
Reliable, Channelized and Robust. In 15th IEEE
Workshop on Local and Metropolitan Area Networks
(June 2007).

Appendix – TCP Primer
We provide the reader with a brief background on TCP
for the purposes of understanding the terms used in this
paper. While we skip many of the detailed nuances of
TCP, we refer the reader to several well known resources
for further TCP details [33, 3, 11, 38, 30, 26].

The Transmission Control Protocol (TCP) [33] is a
connection-oriented protocol that guarantees a reliable,

in-order byte-stream communication service between two
processes, in contrast to the best-effort connectionless
datagram delivery service provided by the User Datagram
Protocol (UDP) [31]. Both TCP and UDP use the Internet
Protocol (IP) [32], a best-effort datagram service, to carry
their messages. The use of TCP is attractive for applica-
tions that perform pairwise communication as it offers the
following advantages:

• Reliability – dealing with message loss, duplication,
damage, and delay

• The in-order delivery of data
• Flow control and congestion control
• Multiplexing and demultiplexing to support multiple

end-points on the same host through the use of port
numbers

A TCP connection is Full Duplex – once a TCP con-
nection is established between two end-points using a
3-way handshake protocol, the connection supports a pair
of byte streams, one in each direction. TCP transfers a
byte-stream by bundling together contiguous bytes into a
TCP segment or packet.

A TCP packet, encapsulated in an IP packet, may be
dropped en-route to the destination due to several causes,
such as 1) the sender’s kernel buffer being full, 2) a router
buffer on the path to the destination being full, 3) routing
errors, or 4) the receiver’s kernel buffer being full. TCP
uses a positive acknowledgement scheme with retrans-
missions to achieve reliable data transfer. To assist in the
in-order delivery of data at the receiver, the TCP sender
assigns a sequence number to every byte of data sent
over a TCP connection. For a given packet, the sequence
number assigned to the packet is the sequence number of
the first byte within the packet. TCP uses a cumulative
acknowledgment scheme: the ACK packet contains a se-
quence number informing the sender that it has received
all bytes up to, but not including, that sequence number.
While TCP assigns sequence numbers based on bytes,
for simplicity, we discuss sequence numbers based on
packets.

To make efficient use of the link, TCP uses a slid-
ing window algorithm to keep multiple packets in flight.
A window defines the number of packets that are unac-
knowledged: the left-edge of the window indicates the
first packet not acknowledged by the receiver. For exam-
ple, as shown in Figure 15, if the sender’s window has a
left-edge sequence number of 10 and a window size of 6,
then the receiver has acknowledged the receipt of all pack-
ets with a sequence number less than 10, and the sender
can transmit packets 10-15 all at once. When packets 10
and 11 reach the receiver, the receiver sends an ACK for
packets 11 and 12 respectively. Since the left edge of the
window now starts at 12 and the window size is 6, the
sender may now transmit packets 16 and 17.

8 9 10 11 12 13 14 15 16 17

current window

8 9 10 11 12 13 14 15 16 17

Left edge of window advances as packets 10, 11 are ACKed

Figure 15: An illustration of TCP’s sliding window mecha-
nism with a fixed window size.

If a packet is delivered to a TCP receiver out-of-order,
either due to re-ordering or losses in the network, the
receiver generates a duplicate ACK for the last packet
it received in-order. Building on the example above, if
packet 12 was dropped by the network, then on receiving
packet 13, the TCP receiver generates an ACK for packet
12 instead of packet 14, and the left edge of the window
is not advanced.

A TCP sender detects a packet loss using the two
schemes described below. Once a packet loss is detected,
a TCP sender recovers from the loss by retransmitting the
packet.

Timeout driven loss recovery: Consider the case
shown in Figure 16(a). Packets 1 to 5 sent by the sender
are all dropped. The sender waits for a certain amount of
time, defined by the retransmission timeout (RTO), before
a timeout event indicates the possible loss of packet 1, at
which point the sender recovers from the loss by retrans-
mitting packet 1. The RTO value is based on the round
trip time (RTT), which is an estimated value.

Data driven loss recovery: A duplicate ACK can be
used as an indication of loss, but it could also be generated
due to packet reordering in the network. To distinguish
benign reordering from actual loss, TCP senders normally
consider 3 duplicate ACKs for a packet as an indication of
a loss. Figure 16(b) shows a case where a sender transmits
5 packets but the second packet is lost. Packets 3, 4, and
5 generate duplicate ACKs indicating that packet 2 is lost.
On getting 3 duplicate ACKs for packet 2, the sender
assumes that packet 2 is lost and retransmits it: this is
called fast retransmit. On receiving packet 2, the receiver
ACKs packet 6, the next in-order packet it expects from
the sender. Data-driven loss recovery responds to losses
more quickly than timeout-driven recovery.

TCP provides end-to-end flow control whereby the re-
ceiver can control the amount of data a sender transmits.

Seq #

1

2

3

4

5

1

ACK 2

Sender Receiver

{Retransmission

Timeout

(RTO)

(a) Timeout-driven Recovery

Seq #

1

2

3

4

5

2

ACK 2

ACK 2

ACK 2

ACK 2

ACK 6

Sender Receiver

(b) Data-driven Recovery.

Figure 16: Recovery schemes in TCP

With every ACK, the receiver returns a window size indi-
cating the number of packets a sender may transmit.

TCP is adaptive – flows utilize available bandwidth by
probing the network. On startup and following a timeout,
TCP has no good estimate of the capacity of the end-to-
end path, so it enters slow-start to discover the capacity.
For every ACKed packet received, the sender grows its
window by 1. This results in an exponential growth in the
window size and, hence, in the sending rate.

Congestion occurs when the sending rate exceeds the
available bandwidth and packets are dropped. Various
TCP algorithms have been designed to deal with conges-
tion – they do this by reacting to congestion (indicated
by loss) by throttling the rate at which the sender trans-
mits data. Under data-driven loss recovery, the sender
performs a multiplicative decrease by halving its window
(also accompanied by fast-recovery) and begins an addi-
tive increase (or congestion avoidance) phase, where for
every window of data acknowledged by the receiver, the
sender increases its window size by 1. Under timeout-
driven recovery, the sender reduces its window to 1, per-
forms slow-start until a certain threshold, and then enters
the congestion avoidance phase.

	Introduction
	Background
	Experimental Setup
	Simulation Environment
	Cluster-based Storage Environment

	Reproducing Incast
	Incast in real systems
	Validation and Analysis in Simulation
	Why Timeouts Occur

	Reducing Losses: Larger Switch Buffers
	Reducing Idle Link Time by Increasing SRU Size

	TCP-level Solutions
	Avoiding Timeouts
	Alternative TCP Implementations -- Reno, NewReno, and SACK
	Addressing the Lack of Sufficient Feedback -- Limited Transmit and Reduced Duplicate ACK Threshold
	Disabling TCP Slow-Start

	Reducing the Penalty of Timeouts

	Ethernet Flow Control
	Related Work
	Conclusion

